Смекни!
smekni.com

Шпаргалка по Геометрии (стр. 3 из 4)

limCosa<lim((Sina)/a)<lim1, по признаку

a®0 a®0 существования

предела ф-ции

lim((Sina)/a)=1

a®0

2ой: lim(1+1/n)n=e»2.7183

n®¥

Зная, что 1/n=a - б.м.в., то n=1/a и

x®¥a®0

lim(1+1/n)1/a=e

a®0

32. Основные приемы нахождения пределов.

1. Подстановка: при х®х0 и х0Îобласти определения ф-ции f(x), предел ф-ции f(x)= его частному значению при х=х0

limf(x)=f(x0)

x®x0

2. Сокращение: при х®¥ и х®х0 f(x)/g(x)=0/0, то сокращают числитель и знаменатель на множитель, стремящийся к 0.

3. уничтожение иррациональности (* числитель и знаменатель на 1 число).

4.деление на наивысшую степень х: при х®¥ и х®х0 f(x)/g(x)=0/0, то делим числитель и знаменатель на наивысшую степень.

5. сведение к известным пределам: lim((Sinx)/x)=1

x®¥

lim(1+1/n)x=e

x®¥

33. Непрерывность ф-ции в точке и на интервале.

x=x0+Dx, Dx=x-x0

Dy=f(x0+Dx)-f(x0)

Ф-ция y=f(x) наз. непрерывной в точке x0, если она определена в окрестности этой точки, а limDy=0. (б.м. приращению аргумента соответствует б.м. приращению ф-ции).

limDy=lim[f(x)-f(x0)]=limf(x)-limf(x0)=0, то

limf(x)=limf(x0)

x®x0

Ф-ция непрерывна в точке х0, если ее предел = значению этой ф-ции в точке х0

Ф-ция явл. непрерывной на интервале, если она непрерывна в каждой его точке.

34. Признаки существования а) предела ф-ции и б) предела последовательности.

а) если все значения ф-ции f(x) заключены между значениями ф-ции j(x) и g(x), которые имеют 1 предел при х®а, то и limf(x)=A

j(x)<=f(x)<=g(x), где limj(x)=А, limg(x)=А, то limf(x)=A. х®а

б) Если последовательность монотонно возрастает и ограниченна сверху, то она имеет предел.

Последовательность монотонно возрастает, если последующий член>предыдущего (xn+1>xn)

Последовательность ограничена сверху, если существует такое М, что xn<=M.

35. Бесконечно малые величины и их св-ва:

величина называется б.м.в. в каком-то процессе, если она в этом процессе бесконечно уменьщается.(r=m/V, если V®¥, то r®0)

Св-ва б.м.в.:

-сумма или разность конечного числа б.м.в. есть б.м.в. (a и b-б.м.в., то a±b=б.м.в.)

-произведение б.м.в. на величину ограниченную есть б.м.в. (U<=M, то a*U=б.м.в.)

-произведение б.м.величин=б.м.в.

-произведение б.м.в. на постоянную = б.м.в

36. Бесконечно большие величины и их св-ва.

б.б.в - величина для которой |Xn|®¥ (при xn=1/n, n®0, то xn®¥)

Св-ва:

-величина обратная б.б.в. явл. б.м.в. (1/¥=0; 1/0=¥)

-сумма б.б.в. (с одинаковым знаком) есть б.б.в.

-произведение 2х б.м.величин=б.м.в.

-частное от деления 2х б.б.в = неопределенность

38. Св-ва непрерывных ф-ций:в
в отрезке:

1. Если ф-ция y=f(x) непрерывна на [a,b] и f(a)*f(b)<0, т.е. знаки f(a) и f(b) противоположны, то на (a,b) найдется хотя бы одна точка х=с, что f(c)=0 (график)-теорема Больцана-Коши.

2. Если ф-ция y=f(x) непрерывна на [a,b], то она ограничена на этом промежутке.

3. Если ф-ция y=f(x) непрерывна на [a,b], то она достигает на этом отрезке minm и maxM (теорема Вейерштрасса).

в точке:

1. если ф-ция f(x) и g(x) непрерывна в х0, то их сумма, произведение, частное (при j(х0)¹0) явл-ся ф-циями, непрерывными в х0

2. если ф-ция y=f(x) непрерывна в х0, и f(x0)>0, то существует окрестность х0, в которой f(x)>0

3. если y=f(U) непрерывна в U0, а U=j(x) непрерывна в U0=j(x0), то сложная ф-ция y=f[j(x)] непрерывна в х0.

39. Задачи, приводящие к понятию производной. Определение производной и ее геометрический смысл.

1. ncp.=DS/Dt, n=lim(DS/Dt), гдеDt®0

2. pcp.=Dm/Dl, pT=lim(Dm/Dl), гдеDl®0

Dy=f(x+Dx)-f(x), y=f(x)

lim(Dy/Dx)=lim((f(x+Dx)-f(x))/Dx)

Dx®0 Dx®0

Смысл производной - это скорость изменения ф-ции при изменении аргумента.

y=f(x+Dx)-f(x), y=f(x). производной в точке а называется предел отношения приращения ф-ции к приращению аргумента:

lim(Dy/Dx)=lim((f(x+Dx)-f(x))/Dx)=dy/dx

Dx®0 Dx®0

Вычисление производной: lim(Dy/Dx)=y` Dx®0

1) если y=x, Dy=Dx, y`=x=lim(Dy/Dx)=1.

2) если y=x2, Dy=(x+Dx)2-x2=x2+2xDx+Dx2-x2=Dx(2x-Dx),

(x2)`=lim((Dx(2x+Dx))/Dx)=lim(2x+Dx)=2x

x®0 Dx®0

Геометрический смысл производной.

KN=Dy, MK=Dx

DMNK/tg2=Dy/Dx

вычислим предел левой и правой части:

limtga=lim(Dy/Dx) Dx®0

tga0=y`

a®a0

При Dx®0 секущая MN®занять положение касательной в точке M(tga0=y`, a®a0)

Геометрический смысл производной заключается в том, что есть tg угла наклона касательной, проведенной в точке x0.

40. Основные правила дифференцирования.

Теорема: Если f(x) и g(x) дифферен. в точке х, то:

Теорема о произв. сложной функции:

Если y(x)=f(u(x)) и существует f’(u) и u’(x), то существует y’(x)=f(u(x))u’(x).

Теорема о произв. обратной функции.

Таблица производных:

41. Дифференцирование сложных ф-ций:

Производная сложной ф-ции = произведению производной ф-ции по промежуточному аргументу и производной самого промежуточного аргумента по независимой переменной.

y`=f(x)*U`,или yx`=yU`*Ux`, или dy/dx=dy/dU=dU/dx

Например:

42. Дифференцирование обратной ф-ции.

y=f(x), то x=j(y) - обратная ф-ция.

Для дифференцируемой ф-ции с производной, не = 0, производная обратной ф-ции = обратной величине производной данной ф-ции, т.е. xy`=1/yx`.

Dy/Dx=1/(Dy/Dx) - возьмем предел от левой и правой части, учитывая, что предел частного = частному пределов:

lim(Dy/Dx)=1/(lim(Dy/Dx), т.е. yx`=1/xy или f`(x)=1/j`(x)

Например:

43. Производные степенных и тригонометрических функций.

Основные формулы:

44. Производные обратных тригонометрических функций.

Основные формулы:

Для сложных функций:

45. Производные показательных и логарифмических функций.

Основные формулы:

Если z=z(x) – дифференцируемая функция от x, то формулы имеют вид:

46. Логарифмическое дифференцирование. Вывод производной степенной ф-ции.

y=ax - показательная ф-ция, y=xn - степенная, y=xx - показательно-степенная.

y=[f(x)]j(x) - показательно-степенная ф-ция.

lny=xlnx - найдем производную от левой и правой части, считая у ф-цией х.

(1/y)*y`=(lny)

(x*lnx)`=x`lnx+x*(lnx)`=lnx+1

y`=y*(lnx+1)=xx(lnx+1)

Операция, которая заключается в последовательном применении к ф-ции y=f(x) сначала логарифмирование, а затем дифференцирование.

Степенная ф-ция:

1.y=xn, nlnx, y`/y=n/x=n*(x)-1

y`=y*n*(x-1)=n*xn*x-1=n*xn-1

2.y=eU, где U=sinx

U`=cosx, y`=(eU)`=eU*U`=esinx*cosx.

47. Производная высших порядков ф-ции 1й переменной.

y=f(x)

y``=(y`)`=lim((f`(x+Dx)-f`(x))/Dx)

x®0

y```=(y``)`= lim((f``(x+Dx)-f``(x))/Dx)

f(n)(x)=[f(n-1)(x)]`

48. Производные 1,2-го порядка неявных ф-ций.

Неявной называется такая ф-ция у аргумента х, если она задана уравнением F(x,y)=0, не разрешенным относительно независимой переменной.

y=f(x), y=x2-1 - явные

F(x,y)=0, a2=x2+y2 - неявные ф-ции.

1)a2=x2+y2 - найдем производную, продифференцируем, считая у - сложной ф-цией х.

y`=2x+2y=0, т.к. а- постоянная

y*y`=-x, y`=-x/y

2) x3-3xy+y3=0

3x3-3(xy)`+3y2*y`=0 //:3

x2-(x`y+y`x)+y2*y`=0

y`y2-xy`=y-x2

y`=(y-x2)/(y2-x)

49. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.

limy=A, y=A+a

limDy/Dx=y`, Dy/Dx=y`+a, Dy=y`Dx+aDx

Dx®0

Dy=y`Dx+e, где e-б.м.в., величина более высокого порядка малости,, чем Dx(a), и ее можно отбросить.

dy=y`Dx

Дифференциалом ф-ции наз. величина, пропорциональная б.м. приращению аргумента Dх и отличающаяся от соответствующего приращения ф-ции на б.м.в. более высокого порядка малости, чем Dх.

Если y=x, то dy=dx=x`Dx=Dx, dx=Dx

Если y¹x, то dy=y`dx, y`=dy,dx

Геометрический смысл: дифференциал - изменение ординаты касательной, проведенной к графику ф-ции в точке (x0,f(x0)) при изменении x0 на величину Dx

Св-ва:
1. (U±V)`=U`±V`, то (U±V)`dx=U`dx±V`dx, d(U±V)=d(U±V)

2. (UV)`=U`V+V`U, то (UV)`dx=V`dU+U`dV

3.d(c)=c`dx=0*dx=0

4. d(U/V)`=(V`dU-U`dV)/V2.

50.Теорема Ролля.

Если функция f(x) непрерывна на заданном промеж/ [a,b] деффер. на интервале (a,b) f(a)=f(b) то существует т. с из интерв. (a,b), такая, что f’(c)=0.

51. Теорема Лагранжа.

Если функция f(x) непрерывна на [a,b] и дефференцирована на (a,b), то сущест.

т. с(a,b), такая, что: f(b)-f(a)=f’(c)(b-a).

Доказательство: применим т.Коши, взяв только g(x)=x, тогда g’(x)=1¹0.

52. Теорема Коши.

Если f(x), g(x) удовл. трем условиям:

1). f(x), g(x) непрерыв. на промеж [a,b]

2). f(x), g(x) деффер. на интервале (a,b)

3). g’(x)¹0 на интер. (a,b), то сущ. т. с