Смекни!
smekni.com

Метод Симпсона (стр. 2 из 4)

Особенностью применения формулы Симпсона является тот факт, что число разбиений отрезка интегрирования - четное.

Если же количество отрезков разбиения - нечетное, то для первых трех отрезков следует применить формулу, использующую параболу третьей степени, проходящую через четыре первые точки, для аппроксимации подынтегральной функции.

(4)

Это формула Симпсона «трех восьмых».

Для произвольного отрезка интегрирования

формула (4) может быть «продолжена»; при этом число частичных отрезков должно быть кратно трем (
точек).

, m=2,3,... (5)

- целая часть

Можно получить формулы Ньютона-Котеса старших порядков :

(6)

- количество отрезков разбиения;

- степень используемого полинома;

- производная
-го порядка в точке
;

- шаг разбиения.

В таблице 1 выписаны коэффициенты

. Каждая строка соответствует одному набору
промежутков
узлами для построения многочлена k-ой степени. Чтобы воспользоваться этой схемой для большего количества наборов (например, при k=2 и n=6), нужно «продолжить» коэффициенты, а затем сложить их.

Таблица 1:

k

C0

A0

a1

a2

a3

a4

a5

a6

2

1

4

1

1

4

1

1

4

1

1

4

2

2

4

1

å

Алгоритм оценки погрешности формул трапеции и Симпсона можно записать в виде:

(7),

где

- коэффициент, зависящий от метода интегрирования и свойств подынтегральной функции;

h - шаг интегрирования;

p - порядок метода.

Правило Рунге применяют для вычисления погрешности путем двойного просчета интеграла с шагами h и kh.

(8)

(8) - апостериорная оценка. Тогда Iуточн.=

+Ro (9),
уточненное значение интеграла
.

Если порядок метода неизвестен, необходимо вычислить I в третий раз с шагом

, то есть:

из системы трех уравнений:

с неизвестными I,А и p получаем :

(10)

Из (10) следует

(11)

Таким образом, метод двойного просчета, использованный необходимое число раз, позволяет вычислить интеграл с заданной степенью точности. Выбор необходимого числа разбиений осуществляется автоматически. Можно при этом использовать многократное обращение к подпрограммам соответствующих методов интегрирования, не изменяя алгоритмов этих методов. Однако для методов, использующих равноотносящие узлы, удается модифицировать алгоритмы и уменьшить вдвое количество вычислений подынтегральной функции за счет использования интегральных сумм, накопленных при предыдущих кратных разбиениях интервала интегрирования. Два приближенных значения интеграла

и
, вычисляемые по методу трапеции с шагами
и
, связаны соотношением:

(12)

Аналогично, для интегралов, вычисленных по формуле с шагами

и
, справедливы соотношения:

,

(13)

4. Выбор шага интегрирования

Для выбора шага интегрирования можно воспользоваться выражением остаточного члена. Возьмем, например, остаточный член формулы Симпсона:

.

Если ê

ê
, то ê
ê
.

По заданной точности e метода интегрирования из последнего неравенства определяем подходящий шаг.

,
.

Однако такой способ требует оценки

(что на практике не всегда возможно). Поэтому пользуются другими приемами определения оценки точности, которые по ходу вычислений позволяют выбрать нужный шаг h.

Разберем один из таких приемов. Пусть

,

где

- приближенное значение интеграла с шагом
. Уменьшим шаг
в два раза, разбив отрезок
на две равные части
и
(
).