Смекни!
smekni.com

Исследование элементарных функций (стр. 1 из 4)

Красноярский Государственный Педагогический Университет им. В.П. Астафьева.

Реферат

На тему: «Исследование элементарных функций».

Выполнила: Квашенко Д.В.

Проверил: Адольф В.А.

г. Красноярск

2005г.

Содержание:

· Определение элементарных функций…………….3

· Функция и её свойства……………………………………..3

· Способы задания функции……………………………….4

· Определение функции……………………………………..4

· Исследование элементарных функций………....6

а) Линейная функция…………………………….......7

б) Степенная функция…………………………………..8

в) Показательная функция……………………………9

г) Логарифмическая функция……………………..10

д) Тригонометрическая функция………………..11

o Y=sinx……………………………….…11

o Y=cosx…………………………………13

o Y=tgx…………………………………..14

o Y=ctgx…………………………………15

е) Обратно тригонометрическая функция..16

o Y=arcsinx…………………………….16

o Y=arccosx……………………………17

o Y=arctgx……………………………..18

o Y=arcctgx…………………………….19

· Список литературы………………………………………..20

Определение элементарных функций.

Функции С (постоянная), xⁿ, ах, 1оgа х, sin х, соs х, tg х, ctgx, аrcsin х, аrccos х, аrctg х называются простейшими элементарными функциями.

Применяя к этим функциям арифметические действия или операции функции от функции, мы будем получать новые более сложные фун­кции, которые называются элементарными функциями.

Например, у = sin (xⁿ) — элементарная функ­ция.

Элементарные функции нам известны из школьной математики.

Функция, и её свойства:

Функция - зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.

Переменная х - независимая переменная или аргумент.

Переменная у - зависимая переменная.

Значение функции - значение у, соответствующее заданному

значению х.

Область определения функции - все значения, которые принимает независимая переменная.

Область значений функции (множество значений)-все значения, которые принимает функция.

Функция является четной - если для любого х из области определения функции выполняется равенство f(x)=f(-x).

Функция является нечетной - если для любого х из области определения функции выполняется равенство f(-x)=-f(x).

Возрастающая функция - если для любых х1и х2, таких, что х1< х2, выполняется неравенство f1)<f2).

Убывающая функция - если для любых х1и х2, таких, что х1< х2, выполняется неравенство f1)>f2).

Способы задания функции:

●Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x) - заданная функция с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.

●На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента.

Определение функции.

Функция, прежде всего, – это одно из основных понятий математического анализа, и чтобы далее рассматривать различные функции, следует дать определение функции.

Пусть даны две переменные x и y с областями изменения X и Y. Предположим, что переменной x может быть приписано произвольное значение из области X без каких-либо ограничений. Тогда переменная y называется функцией от переменной x в области её изменения X, если по некоторому правилу или закону каждому значению x из X ставится в соответствие одно определенное значение y из Y.

Независимая переменная x называется также аргументом функции.

В этом определении существенны два момента: во-первых, указание области X изменения аргумента x (её называют также областью определения функции) и, во-вторых, установление правила или закона соответствия между значениями x и y (Область Y изменения функции обычно не указывается, поскольку самый закон соответствия уже определяет множество принимаемых функцией значений).

Можно в определении понятия функции стать на более общую точку зрения, допуская, чтобы каждому значению x из X отвечало не одно, а несколько значений y (и даже бесконечное множество их). В подобных случаях функцию называют многозначной, в отличие от однозначной функции, определенной выше.

Для указания того факта, что y есть функция от x, пишут:

y=f (x), y=g (x), y=F (x) и т.п.

Буквы f, g, F, … характеризуют именно то правило, по которому получается значение x, отвечающее заданному y. Поэтому, если одновременно рассматриваются различные функции от одного и того же аргумента x, связанные с различными законами соответствия, их не следует обозначать одной и той же буквой.

Хотя именно буква f связана со словом “функция”, но для обозначения функциональной зависимости может применяться и любая другая буква; иногда даже повторяют одну и ту же букву y: y=y(x). В некоторых случаях пишут аргумент и в виде значка при функции, например,

.

Если, рассматривая функцию y=f(x), мы хотим отметить её частное значение, которое отвечает выбранному частному значению x, равному

, то для обозначения его употребляют символ f(
). Например, если

F (x)=

, g (t)=
, то f(1) означает численное значение функции f(x) при x=1, т.е. попросту число
, аналогично, g(5) означает число 2, и т. д.

Теперь обратимся к самому правилу, или закону соответствия между значениями переменных, которое составляет сущность понятия функциональной зависимости.

Наиболее просто осуществление этого правила с помощью формулы, которая представляет функцию в виде аналитического выражения, указывающего те аналитические операции или действия над постоянными числами и над значением x, которые надо произвести, чтобы получить соответствующее значение y. Этот аналитический способ задания функции является наиболее важным для математического анализа.

Однако будет ошибочным думать, что это – единственный способ, которым может быть задана функция. В самой математике нередки случаи, когда функция определяется без помощи формулы. Такова, например, функция E(x) – “целая часть числа x”. Например,

E (1)=1, E (2,5)=2, E (

)=3, E (-
)=-4 и. т.,

хотя никакой формулы, выражающей E(x), у нас нет.

Функция, все значения которой равны между собой, называется постоянной. Постоянную функцию обозначают C (f (x) = C).

Функция f (x) называется возрастающей (убывающей) на множестве X, если для любой пары чисел

и
этого множества из неравенства
<
следует, что f (
) < f (
) (f (
) > f (
)).

Функция f(x) называется четной, если область её определения X есть множество, симметричное относительно начала координат, и при любом x из X имеет место равенство f(-x)=f(x).

График четной функции симметричен относительно оси Oy.

Функция f(x) называется нечетной, если область её определения X есть множество, симметричное относительно начала координат, и если при любом x из X имеет место равенство f(-x)=-f(x).

График нечетной функции симметричен относительно начала координат.

Сумма и разность двух четных (нечетных) функций есть функция четная (нечетная).

Действительно, пусть y(x)=f(x) + g(x). Тогда, если f(x) и g(x) – четные, то y (-x) = f(-x) + g(-x) = f (x) + g (x) = y (x). Если же f (x) и g (x) – нечетные функции, то функция y (x) также будет нечетной, y (-x) = f (-x) + g (-x) = -f (x) – g (x) = -[f (x) + g (x)] = -y (x). (Для разности доказательство аналогичное).

Произведение двух четных или двух нечетных функций есть функция четная, а произведение четной функции на нечетную – нечетная функция.

В самом деле, пусть y (x) = f (x)*g (x) и f (x) и g (x) – четные функции, тогда y (-x) = f (-x)*g (-x) = f (x)*g (x) = y (x); если f (x) и g (x) – нечетные функции, то y (-x) = f (-x)*g(-x) = [-f (x)]*[-g(x)] = y (x); если же f (x) – четная, а g (x) – нечетная функции, то y (x) = f (x)*g (-x) = f (x)*[-g (x)] = -y (x).

Функция f (x) называется периодической, если существует число Т

0 такое, что для любого значения x из области определения функции выполняется равенство f (x - T) = f (x) = f (x + T). Число T называется периодом функции. Если T – период функции, то её периодом является также число – T, так как f (x-T) = f [(x - T) +T] = f (x).