Смекни!
smekni.com

Решение задач по прикладной математике (стр. 1 из 2)

МОСКОВСКАЯ АКАДЕМИЯ ЭКОНОМИКИ И ПРАВА

РЯЗАНСКИЙ ФИЛИАЛ

КОНТРОЛЬНАЯ РАБОТА

По курсу: «ПРИКЛАДНАЯ МАТЕМАТИКА»

Выполнил: ст-т гр. ЭБ - 241

Лебедев Н. В.

Проверил: профессор

Г. И. Королев

Рязань 2003 г.

Задание 1. Решите, используя формулу полной вероятности, формулу гипотез и формулу Бернулли.

1. Число грузовых автомобилей, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу проезжающих легковых автомобилей как 3:2. Вероятность того, что будет заправляться грузовой автомобиль, равна 0.1. Для легковой автомашины эта вероятность равна 0.2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это легковой автомобиль.

Решение.

Определим событие, вероятность которого надо посчитать. А - к бензоколонке подъехал автомобиль.

Тогда гипотезы:

Н1- к бензоколонке подъехала грузовая машина.

Н2 - к бензоколонке подъехал легковой автомобиль

Р(Н1) = 3/(2+3) = 0.6;

Р(Н2) = 2/(2+3) = 0.4

По условию

Р(А/Н1)=0.1

Р(А/Н2)=0.2

Тогда вероятность события А вычисляется по формуле:

P(A)=Р(A|Н1)*Р(Н1)+Р(A|Н2)*Р(Н2)= 0.6

0.1 + 0.4
0.2 = 0.06 + 0.08 = 0.14

P(H2|A)=[ Р(A|Н2)*Р(Н2) ]/P(A) = 0.2

0.4/ 0.14 ~ 0.57

2. Вероятность своевременной оплаты счетов шестью потребителями равна 0.8. Найти вероятность того, что к установленному сроку счета не оплатят не более трех потребителей.

Решение.

«Оплатят не более трех потребителей», это значит, что возможны следующие варианты событий:

счета оплатят 0 – потребителей,

1 - потребитель,

2 - потребителя,

3 – потребителя.

По формуле Бернулли найдем вероятность каждого из этих событий.

P_n(k) = C_n(k)

pk
(1-p)(n-k), где C_n(k) =

n = 6, p = 0.8

1. C_6(0) =

=
= 1

P_6(0) = C_6(0)

0.80
(1-0.8)(6-0) = 1
1
0.26 = 0.000064

2. C_6(1) =

=
= 6

P_6(1) = C_6(1)

0.81
(1-0.8)(6-1) = 6
0.8
0.25 = 0.001536

3. C_6(2) =

=
=
= 15

P_6(2) = C_6(2)

0.82
(1-0.8)(6-2) = 15
0.64
0.24 = 0.01536

4. C_6(3) =

=
=
= 20

P_6(3) = C_6(3)

0.83
(1-0.8)(6-3) = 20
0.512
0.23 = 0.08192

P = P_6(0) + P_6(1) + P_6(2) + P_6(3) = 0.000064 + 0.001536 + 0.01536 + 0.08192 = = 0. 09888

0.099 - вероятность того, что к установленному сроку счета не оплатят не более трех потребителей.

Задание 2. Найти среднее квадратическое отклонение вариационного ряда.

X1 800 1000 1200 1400 1600 1800 2000


n1 1 8 23 39 21 6 2

Среднее квадратическое отклонение случайной величины X вычисляется по формуле Fx =

, где
– дисперсия случайной величины X.

=

- математическое ожидание случайной величины X.

800
1 + 1000
8 + 1200
23 + 1400
39 + 1600
21 + 1800
6 + 2000
2 = 139400

= (800 - 139400)
1 + (1000 - 139400)
8 + (1200 - 139400)
23 + (1400 - -139400)
39 + (1600 - 139400)
21 + (1800 - 139400)
6 + (2000 - 139400)
2 =

= 19209960000 + 153236480000 + 439282520000 + 742716000000 + 398765640000 + + 113602560000 + 37757520000 = 1904570680000

Fx =

1380062

Задание 3. Решить задачу линейного программирования симплексным методом.

Для производства двух видов изделий используются три вида сырья, запасы которого ограничены. Величины запасов приведены в матрице С. Нормы расхода сырья каждого вида на каждое из двух изделий приведены в матрице А , где строки соответствуют виду сырья, а столбцы – виду изделия. Прибыль от реализации изделий указана в матрице P.

Составить план производства изделий так, чтобы предприятие получило максимальную прибыль от их реализации.

5 9 7710

А = 9 7 C = 8910 P = ( 10 22 )

3 10 7800

Найдем производственную программу, максимизирующую прибыль L=10х1+22х2.

Затраты ресурсов 1-го вида на производственную программу 5х1+9х2≤7710.

Затраты ресурсов 2-го вида на производственную программу 9х1+7х2 ≤8910.

Затраты ресурсов 3-го вида на производственную программу 3х1+10х2 ≤7800.

Имеем

1+9х2 ≤ 7710

1+7х2 ≤ 8910

1+10х2 ≤ 7800

где по смыслу задачи х1≥0, х2≥0.

Получена задача на нахождение условного экстремума. Для ее решения систему неравенств при помощи дополнительных неизвестных х3, х4, х5 заменим системой линейных алгебраических уравнений

1+9х23 = 7710

1+7х24 = 8910

1+10х25= 7800

где дополнительные переменные имеют смысл остатков соответствующих ресурсов, а именно

х3 – остаток сырья 1-го вида,

х4 – остаток сырья 2-го вида,

х5 – остаток сырья 3-го вида.

Среди всех решений системы уравнений, удовлетворяющих условию неотрицательности

х1≥0, х2≥0, х3≥0, х4≥0, х5≥0, надо найти то решение, при котором функция L=10х1+22х2 будет иметь наибольшее значение.