Смекни!
smekni.com

Кластерный анализ. Расстояние между объектами. Расстояние между кластерами (стр. 3 из 5)

Однако эта операция может привести к нежелательным последствиям. Если кластеры хорошо разделены по одному признаку и не разделены по другому, то после нормирования дискриминирующие возможности первого признака будут уменьшены в связи с увеличением “шумового” эффекта второго.

“Взвешенное” Евклидово пространство

(1.2)

применяется в тех случаях, когда каждой компоненте xl вектора наблюдений X удается приписать некоторый “вес” ωl, пропорционально степени важности признака в задаче классификации. Обычно принимают 0≤ωe≤1, где e=1,2,...k.

Определение “весов”, как правило, связано с дополнительными исследованиями, например, организацией опроса экспертов и обработкой их мнений. Определение весов ωl только по данным выборки может привести к ложным выводам.

Хеммингово расстояние

Используется как мера различия объектов, задаваемых дихотомическими признаками. Это расстояние определяется по формуле

(1.3)

и равно числу несовпадений значений соответствующих признаков в рассматриваемых i-м и j-м объектах.

В некоторых задачах классификации объектов в качестве меры близости объектов можно использовать некоторые физические содержательные параметры, так или иначе характеризующие взаимоотношения между объектами. Например, задачу классификации отраслей народного хозяйства с целью агрегирования решают на основе матрицы межотраслевого баланса [1].

В данной задаче объектом классификации является отрасль народного хозяйства, а матрица межотраслевого баланса представлена элементами sij, характеризующими сумму годовых поставок i-ой отрасли в j-ю в денежном выражении. В качестве меры близости {rij} принимают симметризованную нормированную матрицу межотраслевого баланса. С целью нормирования денежное выражение поставок i-ой отрасли в j-ю заменяют долей этих поставок по отношению ко всем поставкам i-ой отрасли. Симметризацию же нормированной матрицы межотраслевого баланса можно проводить, выразив близость между i-й и j-й отраслями через среднее значение из взаимных поставок, так что в этом случае rij=rji.

Как правило, решение задач классификации многомерных данных предусматривает в качестве предварительного этапа исследования реализацию методов, позволяющих выбрать из компонент х1, х2, ..., хк наблюдаемых векторов Х сравнительно небольшое число наиболее существенно информативных, т.е. уменьшить размерность наблюдаемого пространства.

В ряде процедур классификации (кластер-процедур) используют понятия расстояния между группами объектов и меры близости двух групп объектов.

Пусть si- i-я группа (класс, кластер), состоящая из ni объектов;

Їxi - среднее арифметическое векторных наблюдений si группы, т.е. "центр тяжести" i-й группы; ρ(sl,sm) - расстояние между группами sl и sm.

Наиболее употребительными расстояниями и мерами близости между классами объектов являются:

- расстояние, измеряемое по принципу “ближайшего соседа”

(1.4)

- расстояние, измеряемого по принципу “дальнего соседа”

(1.5)

- расстояние, измеряемое по “центрам тяжести” групп

(1.6)

- расстояние, измеряемое по принципу “средней связи”, определяется как среднее арифметическое всех попарных расстояний между представителями рассматриваемых групп

(1.7)

Академиком А.Н.Колмогоровым было предложено “обобщенное расстояние” между классами, которое включает в себя в качестве частных случаев все рассмотренные выше виды расстояний.

Расстояния между группами элементов особенно важно в так называемых агломеративных иерархических кластер-процедурах, так как принцип работы таких алгоритмов состоит в последовательном объединении элементов, а затем и целых групп, сначала самых близких, а затем все более и более отдаленных друг от друга.

При этом расстояние между классами sl и s(m,q), являющиеся объединением двух других классов sm и sq, можно определить по формуле

(1.8)

где ρρ

- расстояния между классами sl, sm и sq;

- α, β, δ и γ - числовые коэффициенты, значения которых определяют специфику процедуры, ее алгоритм.

Например, при α= β=-δ=1/2и γ=0 приходим к расстоянию, построенному по принципу “ближайшего соседа”. При α= β=δ=1/2 и γ=0 - расстояние между классами определяется по принципу “дальнего соседа”, то есть как расстояние между двумя самыми дальними элементами этих классов.

И, наконец, при

γ=δ=0

соотношение (1.8) приводит к расстоянию ρср между классами, вычисленному как среднее из расстояний между всеми парами элементов, один из которых берется из одного класса, а другой из другого.

Для вычисления расстояния между объектами используются различные меры сходства (меры подобия), называемые также метриками или функциями расстояний. В начале лекции мы рассмотрели евклидово расстояние, это наиболее популярная мера сходства.

Квадрат евклидова расстояния.

Для придания больших весов более отдаленным друг от друга объектам можем воспользоваться квадратом евклидова расстояния путем возведения в квадрат стандартного евклидова расстояния.

Манхэттенское расстояние (расстояние городских кварталов), также называемое "хэмминговым" или "сити-блок" расстоянием.

Это расстояние рассчитывается как среднее разностей по координатам. В большинстве случаев эта мера расстояния приводит к результатам, подобным расчетам расстояния евклида. Однако, для этой меры влияние отдельных выбросов меньше, чем при использовании евклидова расстояния, поскольку здесь координаты не возводятся в квадрат.

Расстояние Чебышева. Это расстояние стоит использовать, когда необходимо определить два объекта как "различные", если они отличаются по какому-то одному измерению.

Процент несогласия. Это расстояние вычисляется, если данные являются категориальными.

2.2. Расстояние между кластерами

Когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Возникает следующий вопрос - как определить расстояния между кластерами?

Существуют различные правила, называемые методами объединения или связи для двух кластеров.

Метод ближнего соседа или одиночная связь. Здесь расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Этот метод позволяет выделять кластеры сколь угодно сложной формы при условии, что различные части таких кластеров соединены цепочками близких друг к другу элементов. В результате работы этого метода кластеры представляются длинными "цепочками" или "волокнистыми" кластерами, "сцепленными вместе" только отдельными элементами, которые случайно оказались ближе остальных друг к другу.

Метод наиболее удаленных соседей или полная связь. Здесь расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Метод хорошо использовать, когда объекты действительно происходят из различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является "цепочечным", то этот метод не следует использовать.

Метод Варда (Ward's method). В качестве расстояния между кластерами берется прирост суммы квадратов расстояний объектов до центров кластеров, получаемый в результате их объединения (Ward, 1963). В отличие от других методов кластерного анализа для оценки расстояний между кластерами, здесь используются методы дисперсионного анализа. На каждом шаге алгоритма объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров и "стремится" создавать кластеры малого размера.

Метод невзвешенного попарного среднего (метод невзвешенного попарного арифметического среднего - unweighted pair-group method using arithmetic averages, UPGMA (Sneath, Sokal, 1973)).

В качестве расстояния между двумя кластерами берется среднее расстояние между всеми парами объектов в них. Этот метод следует использовать, если объекты действительно происходят из различных "рощ", в случаях присутствия кластеров "цепочного" типа, при предположении неравных размеров кластеров.

Метод взвешенного попарного среднего (метод взвешенного попарного арифметического среднего - weighted pair-group method using arithmetic averages, WPGM A (Sneath, Sokal, 1973)). Этот метод похож на метод невзвешенного попарного среднего, разница состоит лишь в том, что здесь в качестве весового коэффициента используется размер кластера (число объектов, содержащихся в кластере).

Этот метод рекомендуется использовать именно при наличии предположения о кластерах разных размеров.

Невзвешенный центроидный метод (метод невзвешенного попарного центроидного усреднения - unweighted pair-group method using the centroid average (Sneath and Sokal, 1973)).