Смекни!
smekni.com

Распределение случайной величины Эмпирические линии регрессии (стр. 1 из 2)

Контрольная работа № 1

Задача 1

Рабочие обслуживают три станка, на которых обрабатывается однотипные детали. Вероятность изготовления бракованной детали на первом станке равна 0,2, на втором – 0,3, на третьем – 0,4. Обработанные детали складываются в один ящик. Производительность первого станка в три раза больше чем второго, а третьего – в два раза меньше чем второго. Взятая на удачу деталь оказалась бракованной. Найти вероятность того, что она изготовлена на третьем станке.

Решение:

Событие А – взятая деталь оказалась бракованной. Деталь может быть изготовлена на первом, втором или третьем станке, обозначим через В1, В2 и В3. Соответственно Р(В1) =

, Р(В2) =
, Р(В3) =
.

Условная вероятность того, что бракованная деталь изготовлена первым станком РВ1(А) = 0,02, аналогично РВ2(А) = 0,03 и РВ3(А) = 0,04.

По формуле полной вероятности

Р(А) =

По формуле Бейеса

Ответ: РА3) = 0,1818


Задача 2

Каждая из пяти упаковок тетрадей содержит две тетради в линейку и три в клетку. Из каждой упаковки случайным образом отбираются по две тетради. Найти вероятность того, что не менее чем в трех из отобранных пяти пар тетрадей обе тетради будут в клетку.

Решение:

Вероятность взять 2 тетради в клетку из пачки

Р =

.

Не менее трех пар из пяти отобранных должны быть – 3 пары, 4 пары, 5 пар.

Вычислим

Р5(3) + Р5(4) + Р5(5).

Pn(k) =

,

где р = 0,3 и q = 0,7.

Р5(3) = 0,1323

Р5(4) = 0,0284

Р5(5) = 0,0024

Искомая вероятность равна 0,1323 + 0,0284 + 0,0024 = 0,1631

Ответ: 0,1631

Задача 3

Вероятность того, что договор страховой кампании завершится выплатой по страховому случаю, равна 0,1. Страховая кампания заключила 2000 договоров. Найти вероятность того, что страховой случай наступит: а) 210 раз; б) от 190 до 250 раз включительно.

Решение:

а) Используем локальную теорему Лапласа, где k = 210, р = 0,1 и q = 0,9.

Pn(k) =

, где
=

Р2000(210) =

б) Используем интегральную теорему Лапласа, где n = 2000, k2 = 250, k1 = 190.

Pn(k1;k2) = F(x’’) - F(x’),

х’’ =

.

х’ =

.

F(x’’) = F(3,73) = 0,4999.

F(x’) = F(-0,75) = - 0,2764.

P2000(190;250) = 0,4999 + 0,2764 = 0,7763/

Ответ: а) Р2000(210) = 0,0224, б) Р2000(190;250) = 0,7763

Задача 4

Законное распределение независимых случайных величин Х и У имеют вид:


Х:

xi 0 1 2
pi 0,3 ? 0,2

Y:

yi 1 2
pi 0,4 ?

Найти вероятность P(X = 1), P(Y = 2).

Составить закон распределения случайной величины

Z = X*Y.

Проверить выполнение свойства математического ожидания:

M(Z) = M(X)*M(Y)

Решение:

Р(Х = 1) = 1 – (0,3 + 0,2) = 0,5

Р(Y = 2) = 1 – 0,4 = 0,6

Составим закон распределения случайной величины Z = X*Y

xj 0 1 2
yi pj pi 0,3 0,5 0,2
1 0,4 0 0,12 1 0,2 2 0,08
2 0,6 0 0,18 20,3 4 0,12
zi 0 1 2 4
pi 0,3 0,2 0,38 0,12

Spi = 0,3 + 0,2 + 0,38 + 0,12 = 1

M(Z) = 0*0,3 + 1*0,2 + 2*0,38 + 4*0,12 = 1,44

M(X) = 0*0,3 + 1*0,5 + 2*0,2 = 0,9

M(Y) = 1*0,4 + 2*0,6 = 1,6

M(Z) = M(X)*M(Y) = 0,9*1,6 = 1,44.

Ответ:

Zi 0 1 2 4
Pi 0,3 0,2 0,38 0,12

Задача 5

Функции распределения непрерывной случайной величины Х имеет вид:


0 при х < -1,

F(x) = (х + 1)2 при -1 £ х £ 0,

1 при х > 0.

Найти математическое ожидание этой случайной величины и вероятность того, что при каждом из трех независимых наблюдений этой случайной величины будет выполнено условие

.

Решение:

Найдем плотность распределения


0 при х < -1,

f(x) = F’(x) = 2(x + 1) при -1 £ х £ 0,

1 при х > 0.


М(х) =

- математическое ожидание.

Р(х £

) = Р( -1 £ х <
) = F(
) – F( -1) =

Ответ: М(х) =

и Р(х <
) =

Контрольная работа № 4

Задача 1

При выборочном опросе ста телезрителей, пользующихся услугами спутникового телевидения, получены следующие результаты распределения их по возрасту

Возраст (лет) Менее 20 20 – 30 30 – 40 40 – 50 50 – 60 60 – 70 Более 70 Итого
Количество пользователей (чел.) 8 17 31 40 32 15 7 150

Найти:

а) Вероятность того, что средний возраст телезрителей отличается от среднего возраста, полученного по выборке, не более чем на два года (по абсолютной величине);

б) Границы, в которых с вероятностью 0,97 заключена доля телезрителей, возраст которых составляет от 30 до 50 лет;

в) Объем бесповторной выборки, при котором те же границы для доли можно гарантировать с вероятностью 0,9876; дать ответ на тот же вопрос, если никаких предварительных сведений о доле нет.

Решение:

Вычислим среднюю арифметическую и дисперсию распределения. Величина интервала k = 10 и с = 45, середина пятого интервала. Вычислим новые варианты в рабочей таблице:

i [xi;xi+1] xi ui ni ui;ni u2i;ni ui +1 (ui + 1)ni
1 10 – 20 15 -3 8 -24 72 -2 32
2 20 – 30 25 -2 17 -34 68 -1 17
3 30 – 40 35 -1 31 -31 31 0 0
4 40 – 50 45 0 40 0 0 1 40
5 50 – 60 55 1 32 32 32 2 128
6 60 – 70 65 2 15 30 60 3 135
7 70 – 80 75 3 7 21 63 4 112
S 315 0 150 -6 326 7 464

a) Найдем среднюю квадратическую ошибку бесповторной выборки

Искомая доверительная вероятность

б) Выборочная доля зрителей от 30 до 50 лет

Средняя квадратическая ошибка бесповторной выборки для доли

Из соотношения g = Ф(t) = 0,97; t = 2,17

Предельная ошибка выборки для доли D = 2,17*0,0376 = 0,08156

Искомый доверительный интервал

0,4733 – 0,08156 £ р £ 0,4733 + 0,08156

0,3918 £ р £ 0,5549

в) Учитывая g = Ф(t) = 0,3876; t = 2,5

человек.

Если о доле p = w ничего не известно, полагаем (pq)max = 0,25

человек.

Ответ: а)

; б) 0,3918 £ р £ 0,5549 ; в) 190 человек