Смекни!
smekni.com

Некоторые дополнительные вычислительные методы (стр. 2 из 9)

Этот метод представляет собой модификацию метода простой итерации. Его смысл заключается в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1)-е приближения x1, x2, ..., xi-1. Пусть дана приведенная линейная система

(i = 1, 2, …n). Выберем произвольно начальные приближения корней
, стараясь, чтобы они в какой-то мере соответствовали искомым неизвестным x1, x2, x3, ..., xn. Предположим, что k-е приближение
корней известно, тогда в соответствии с идеей метода будем строить (k+1)–е приближение по следующим формулам:

Обычно процесс Зейделя сходится быстрее, чем метод простой итерации. Бывает, что процесс Зейделя сходится, когда простая итерация расходится и т.п. Правда, бывает и наоборот. Во всяком случае, достаточные условия сходимости для метода простой итерации достаточны и для сходимости метода Зейделя. То есть процесс итерации сходится, если выполнено одно из условий

1)

или 2)
.

Пример. Методом Зейделя решить систему уравнений

Решение. Приведем эту систему к виду, удобному для итерации,

В качестве нулевых приближений корней возьмем:

;
;
.

Применяя процесс Зейделя, последовательно получим:

и т.д.

Результаты вычислений с точностью до четырех знаков помещены в таблице:

0 1,2000 0,0000 0,0000
1 1,2000 1 ,0600 0,9480
2 0,9992 1,0054 0,9991
3 0,9996 1.0001 1,0001
4 1 ,0000 1,0000 1,0000
5 1 ,0000 1,0000 1,0000

Точные значения корней:

.

2. Методы решения нелинейных уравнений

Как известно, далеко не всякое уравнение f(x)=0 можно решить точно, т.е. не всегда можно найти число

такое что f(
)≡0. В первую очередь это относится к трансцендентным уравнениям. Кроме того, даже для алгебраических уравнений степени выше четвертой не существуют формулы, выражающей их решения через коэффициенты уравнения при помощи арифметических операций и извлечение корней. Для уравнений третьей и четвертой степени формулы для отыскания корней существуют, но они настолько сложны, что практически не применяются. Поэтому большое значение имеет приближенное вычисление корней уравнения f(x)=0. Для этого существует множество методов некоторые, из которых мы рассмотрим.

Метод хорд

Пусть дано уравнение f(x)=0, где функция f(x) определена и непрерывна на интервале

[a, b] и f(a)f(b)<0. Пусть для определенности f(a)<0 и f(b)>0. Разделим отрезок [a, b] в отношении - f(a):f(b). Это даст нам приближенное значение корня x1 = a + h1, где

.

Далее этот прием применяем к одному из отрезков [a, x1] или [x1, b], на концах которого функция f(x) имеет противоположные знаки. Аналогично находим второе приближение x2 и т.д. Геометрически этот способ эквивалентен замене кривой y = f(x) хордой, проходящей через точки А[a, f(a)] и B[b, f(b)].