Смекни!
smekni.com

Абель Нильс Хенрик - величайший математик (стр. 1 из 2)

АБЕЛЬ Нильс Хенрик
Abel Niels Henrik
(1802-1829)

Абель родился в 1802 году на северо-западном побережье Норвегии в небольшом рыбацком городке Финней (Finnоy), где не было ни математиков, ни нужных ему книг. О первых годах его детства почти ничего не известно. Тринадцати лет он поступил в школу в Осло. Пастор Абель, видимо, неплохо подготовил сына. Первое время он занимался без труда и получал хорошие отметки, а по математике иногда отличные. Любил играть в шахматы, посещать театр. Но среди первых учеников он не значился. Однако через три года школьной жизни у шестнадцатилетнего Нильса наступил перелом.

Вместо жестокого учителя математики, избивавшего учеников, в школу приехал новый учитель Хольмбое, хорошо знавший свой предмет и умевший заинтересовать учеников. Хольмбое предоставил каждому ученику действовать самостоятельно и поощрял тех, кто делал первые шаги в овладении математикой. Очень скоро Абель не только искренне увлекся этой наукой, но и обнаружил, что в состоянии оправиться с такими задачами, которые другим не под силу.

Хольмбое всячески поддерживал его рвение, давал специальные задачи, разрешал брать учебники из собственной библиотечки. В основном это были "Руководства" Эйлера. Абель со всем пылом отдался занятиям математикой и продвигался вперед с быстротой, которая отличает гения, - писал позднее Хольмбое. Через короткий срок он совершенно освоился с элементарной математикой и попросил меня заняться с ним высшей. По собственной инициативе он глотал одну за другой книги Лакруа, Пуассона, Гаусса и с особым интересом работа Лагранжа.

В последние два школьных года Абель начинает всерьез пробовать свои силы в самостоятельном исследовании, Со свойственной юности оптимизмом он берется за наиболее сложные задачи. Одна из них в особенности привлекала всеобщее внимание. Речь идет о решении уравнений пятой степей или уравнений даже более высоких степеней. Формулы для решения уравнений низших степеней известны: второй степени - с незапамятных времен, третьей степени - благодаря работам Тартальяи Кардано. Правило решения уравнений четвертой степени в радикалах дал юный ученик Кардано - Феррари. Это случилось в XVI веке. Но дальше дело застопорилось: никому не удавалось вывести формулу для решения уравнений пятой степени.

В том, что такая формула существует, математики в то время не сомневались. Всем казалось, что дело лишь в том, чтобы найти эту формулу, составить, волшебную комбинацию из коэффициентов уравнения, знаков арифметических действий и радикалов, по которой можно будет решить любое уравнение пятой степени. Но проходили столетия, а такую комбинацию никому не удавалось составить, хотя многие этому посвятили всю жизнь.

Абель поступил в университет в 1821 году. Отец его умер, и у него не было средств к существованию. Он подал прошение о стипендии, но университет не располагал средствами для этого. Тогда некоторые профессора университета, "дабы сохранить для науки редкое дарование", стали выплачивать ему стипендию из своих средств. Этого было недостаточно для содержания семьи, и Абель стал подрабатывать уроками. Но он так и не избавился от нищеты.По его окончании получил степень кандидата философии. Зимой 1822–23 выполнил большую научную работу, посвященную интегрируемости дифференциальных уравнений, и в качестве премии ему была назначена государственная стипендия.

Статья "Доказательство невозможности решения в радикалах общего уравнения выше четвертой степени" была опубликована в 1826 году, и это сразу поставило Абеля в первый ряд математиков мира. Но его следующий мемуар, представленный Парижской академии наук и переданный Коши для рецензирования и представления в печать, затерялся среди бумаг ученого. Коши разыскал его лишь после смерти Абеля. Этот труд Абеля, совместно с трудом Якоби, был удостоен большой премии Академии. Если бы эта премия досталась Абелю при жизни... Но этого не произошло, и все последние годы Абель провел в крайней нужде. Он умер 6 апреля 1829 года.

Теорема Абеля. Ни для какого натурального n, большего четырех, нельзя указать формулу, которая выражала бы корни любого уравнения через его коэффициенты при помощи радикалов.

ДОСТИЖЕНИЯ В МАТЕМАТИКЕ

За свою короткую жизнь Абель сделал важнейшее для дальнейшего развития математике открытие. Пытаясь решить в радикалах общее уравнений 5-й степени, он выдвинул такую общую идею: вместо того, чтобы искать зависимость, само существование которой остается не досказанным, следует поставить вопрос, возможна ли в действительности такая зависимость. Руководствуясь этой идеей, Абель выяснил, почему уравнения 2-й, 3-й и 4-й степеней решаются в радикалах. Абель также обнаружил ряд алгебраических функций, которые не интегрируются с помощью элементарных функций; их интегрирование приводит к новым трансцендентным функциям. Эти исследования привели Абеля к созданию теории эллиптических гиперэллиптических функций, в которую он внес большой вклад независимо от К. Якоби. Абель - основатель общей теории интегралов алгебраических функций. Другие важные работы Абеля относятся к теории рядов. Его именем названа теорема о непрерывности функций во всем круге сходимости соответствующего ряда.

Вейерштрасс, Карл Теодор Вильгельм
(Weierstrass, Karl Theodor Wilhelm)

(1815–1897)

"Нельзя быть настоящим математиком, не будучи немного поэтом."

Карл Вейерштрасс

В 1834 по настоянию отца Вейерштрасс отправился в Бонн изучать юридические науки и финансы, чтобы затем поступить на государственную службу. Однако четыре года пребывания в Боннском университете были потрачены им в основном на развлечения - фехтование и дружеские попойки.

Казалось бы, ничто не подталкивало его к занятиям математикой, и все же известно, что в это время он самостоятельно, не обладая никакими предварительными знаниями, проработал труд Якоби Fundamenta nova, посвященный эллиптическим функциям, и решил углубленно заняться этой проблемой. Узнав, что Гудерман в Мюнстере ведет исследования по эллиптическим функциям, Вейерштрасс в 1839 поступил в Академию Мюнстера. В течение двух лет учился у Гудермана, а затем прошел годичный испытательный срок на звание преподавателя. Получив диплом, 14 лет преподавал математику в прусских гимназиях - в Дойч-Кроне (1842-1848) и Брауншвейге (1848-1855). Упорно занимался проблемой обращения гиперэллиптических интегралов, продолжив исследования, начатые Абелем. В 1843 в годовом отчете гимназии Дойч-Кроне были напечатаны его Замечания об аналитических факториалах (Bemerkungen ber die analytischen Fakultten) - то, что теперь называется основами вейерштрассовой теории функций, а в 1854 в "Журнале" Крелля появилась статья К теории абелевых функций (Zur Theorie der Abelschen Funktionen), принесшая Вейерштрассу известность. На эту статью обратил внимание математик Ф.Ришело, профессор университета Кёнигсберга. Ришело убедил руководство университета присудить Вейерштрассу почетную докторскую степень и сам поехал в маленький городок, где тот преподавал, чтобы лично сообщить ему об этом. В 1856 Вейерштрасс был приглашен сначала в Королевскую политехническую школу в Берлине, а в 1864 - в Берлинский университет.

Исследования Вейерштрасса посвящены математическому анализу, теории функций, вариационному исчислению, дифференциальной геометрии и линейной алгебре. Вейерштрасс разработал систему логического обоснования математического анализа на основе построенной им теории действительных чисел. Он систематически использовал понятия верхней и нижней грани и предельной точки числовых множеств, дал строгое доказательство основных свойств функций, непрерывных на отрезке, и ввёл во всеобщее употребление понятие равномерной сходимости функционального ряда. К вариационному исчислению относятся: исследование достаточных условий экстремума интеграла (условие Вейерштрасса), построение вариационного исчисления для случая параметрического задания функций, изучение "разрывных" решений в задачах вариационного исчисления и др.

Джон фон Нейман
(von Neumann)
(1903 — 1957)

Нейман не мог себе представить, что математика кому-то может казаться сложной:" Если люди не полагают, что математика проста, то только потому, что они не понимают, как на самом деле сложна жизнь."

Приступая к работе с ЭВМ фон Нейман понимал, что компьютер — это не больше, чем простой калькулятор, что — по крайней мере, потенциально — он представляет собой универсальный инструмент для научных исследований. В июле 1954 г., меньше чем через год после того, как он присоединился к группе Моучли и Эккерта, фон Нейман подготовил отчет на 101 странице, в котором обобщил планы работы над машиной EDVAC. Этот отчет, озаглавленный "Предварительный доклад о машине EDVAC" представлял собой прекрасное описание не только самой машины, но и ее логических свойств. Присутствовавший на докладе военный представитель Голдстейн размножил доклад и разослал ученым, как США, так и Великобритании.

Благодаря этому "Предварительный доклад" фон Неймана стал первой работой по цифровым электронным компьютерам, с которым познакомились широкие круги научной общественности. Доклад передавали из рук в руки, из лаборатории в лабораторию, из университета в университет, из одной страны в другую. Эта работа обратила на себя особое внимание, поскольку фон Нейман пользовался широкой известностью в ученом мире. С того момента компьютер был признан объектом, представлявшим научный интерес. В самом деле, и по сей день ученые иногда называют компьютер "машиной фон Неймана".