Смекни!
smekni.com

Тепловое излучение (стр. 2 из 3)

Руководствуясь представлениями о квантовом излучении АЧТ, он получил уравнение для спектральной плотности энергетической светимости АЧТ:

Эта формула находится в соответствии с опытными данными во всем интервале длин волн при всех температурах.

Солнце - основной источник теплового излучения в природе. Солнечное излучение занимает широкий диапазон длин волн: от 0, 1нм до 10м и более. 99% солнечной энергии приходится на диапазон от 280 до 6000нм. На единицу площади Земной поверхности приходится в горах от 800 до 1000 Вт/м2. До земной поверхности доходит одна двухмиллиардная часть тепла - 9, 23 Дж/см2. На диапазон теплового излучения от 6000 до 500000нм приходится 0, 4% энергии Солнца. В атмосфере Земли большая часть ИК-излучения поглощается молекулами воды, кислорода, азота, диоксида углерода. Радиодиапазон тоже большей частью поглощается атмосферой.

Количество энергии, которую приносят солнечные лучи за 1с на площадь в 1 кв.м, расположенную за пределами земной атмосферы на высоте 82 км перпендикулярную солнечным лучам называется солнечной постоянной. Она равна 1, 4*103 Вт/м2.

Спектральное распределение нормальной плотности потока солнечного излучения совпадает с таким для АЧТ при температуре 6000 градусов. Поэтому Солнце относительно теплового излучения - АЧТ.

3. Излучение реальных тел и тела человека

Тепловое излучение с поверхности тела человека играет большую роль в теплоотдаче. Существуют такие способы теплоотдачи: теплопроводность (кондукция), конвекция, излучение, испарение. В зависимости от условий, в которых окажется человек, каждый из этих способов может иметь доминирующее значение (так, например, при очень высоких температурах среды ведущая роль принадлежит испарению, а в холодной воде – кондукции, причем температура воды 15 градусов является смертельной средой для обнаженного человека, и через 2-4 часа наступает обморок и смерть вследствие переохлаждения мозга). Доля излучения в общей теплоотдаче может составлять от 75 до 25%. В нормальных условиях около 50% при физиологическом покое.

Тепловое излучение, которое играет роль в жизни живых организмов делится на коротковолновую (от 0, 3 до 3 мкм) и длинноволновую (от 5 до 100мкм). Источником коротковолнового излучения служат Солнце и открытое пламя, а живые организмы являются исключительно реципиентами такого излучения. Длинноволновая радиация и излучается, и поглощается живыми организмами.

Величина коэффициента поглощения зависит от соотношения температур среды и тела, площади их взаимодействия, ориентации этих площадей, а для коротковолнового излучения – от цвета поверхности. Так у негров происходит отражение лишь 18% коротковолнового излучения, тогда как у людей белой расы около 40% (скорее всего, цвет кожи негров в эволюции не имел отношение к теплообмену). Для длинноволнового излучения коэффициент поглощения приближен к 1.

Расчет теплообмена излучением - очень трудная задача. Для реальных тел использовать закон Стефана-Больцмана нельзя, поскольку у них более сложная зависимость энергетической светимости от температуры. Оказывается, она зависит от температуры, природы тела, формы тела и состояния его поверхности. Со сменой температуры изменяется коэффициент σ и показатель степени температуры. Поверхность тела человека имеет сложную конфигурацию, человек носит одежду, которая изменяет излучение, на процесс влияет поза, в которой находится человек.

Для серого тела мощность излучения во всем диапазоне определяется по формуле: P = αс.т.σ·T4·S Считая с определенными приближениями реальные тела (кожа человека, ткани одежды) близкими к серым телам, можно найти формулу для вычисления мощности излучения реальными телами при определенной температуре: P = α·σ·T4·S В условиях разных температур излучающего тела и окружающей среды: P = α·σ·(T14 - T24)·S

Существуют особенности спектральной плотности энергетической светимости реальных тел: при 310К, что соответствует средней температуре тела человека, максимум теплового излучения приходится на 9700нм. Любое изменение температуры тела приводит к изменению мощности теплового излучения с поверхности тела (0, 1 градус достаточно). Поэтому исследование участков кожи, через ЦНС связанных с определенными органами, способствует выявлению заболеваний, в результате которых температура изменяется довольно значительно (термография зон Захарьина-Геда).

Интересен метод бесконтактного массажа биополем человека (Джуна Давиташвили). Мощность теплового излучения ладони 0, 1Вт, а тепловая чувствительность кожи 0, 0001 Вт/см2. Если действовать на вышеупомянутые зоны, можно рефлекторно стимулировать работу этих органов.

4. Биологическое и терапевтическое действие тепла и холода

Тело человека постоянно излучает и поглощает тепловое излучение. Этот процесс зависит от температур тела человека и окружающей среды. Максимум ИК-излучения тела человека приходится на 9300нм.

При маленьких и средних дозах облучения ИК-лучами усиливаются метаболические процессы и ускоряются ферментативные реакции, процессы регенерации и репарации.

В результате действия ИК-лучей и видимого излучения в тканях образуются БАВ (брадикинин, калидин, гистамин, ацетилхолин, в основном вазомоторные вещества, которые играют роль в осуществлении и регуляции местного кровотока).

В результате действия ИК-лучей в коже активируются терморецепторы, информация от которых поступает в гипоталамус, в результате чего расширяются сосуды кожи, увеличивается объем циркулирующей в них крови, усиливается потовыделение.

Глубина проникновения ИК-лучей зависит от длины волны, влажности кожи, наполнения ее кровью степени пигментации и т.д.

На коже человека под действием ИК-лучей возникает красная эритема.

Применяется в клинической практике для влияния на местную и общую гемодинамику, усиления потовыделения, расслабления мышц, снижения болевого ощущения, ускорения рассасывания гематом, инфильтратов и т.д.

В условиях гипертермии усиливается противоопухолевое действие лучевой терапии - терморадиотерапия.

Основные показания применения ИК-терапии: острые негнойные воспалительные процессы, ожоги и обморожения, хронические воспалительные процессы, язвы, контрактуры, спайки, травмы суставов, связок и мышц, миозиты, миалгии, невралгии. Основные противопоказания: опухоли, гнойные воспаления, кровотечения, недостаточность кровообращения.

Холод применяется для остановки кровотечений, обезболивания, лечения некоторых заболеваний кожи. Закаливание ведет к долголетию.

Под действием холода снижается частота сердечных сокращений, артериальное давление, угнетаются рефлекторные реакции.

В определенных дозах холод стимулирует заживление ожогов, гнойных ран, трофических язв, эрозий, коньюктивитов.

Криобиология - изучает процессы, которые происходят в клетках, тканях, органах и организме под действием низких, нефизиологических температур.

В медицине используются криотерапия и гипертермия. Криотерапия включает методы, основанные на дозированном охлаждении тканей, органов. Криохирургия (часть криотерапии) использует локальное замораживание тканей с целью их удаления (часть миндалины. Если вся – криотонзилоэктомия. Можно удалять опухоли, например, кожи, шейки матки и т.д.) Криоэкстракция, основанная на криоадгезии (прилипании влажных тел к замороженному скальпелю) – выделение из органа части.

При гипертермии можно некоторое время сохранить функции органов ин виво. Гипотермию с помощью наркоза используют для сохранения функции органов при отсутствии кровоснабжения, поскольку замедляется обмен веществ в тканях. Ткани становятся стойкими к гипоксии. Применяют холодовой наркоз.

Осуществляют действие тепла с помощью ламп накаливания (лампа Минина, солюкс, ванна светотепловая, лампа ИК-лучей) с использованием физических сред, имеющих высокую теплоемкость, плохую теплопроводность и хорошую теплосохранящую способность: грязи, парафин, озокерит, нафталин и т.д.

5. Физические основы термографии.Тепловизоры

Термография, или тепловидение - это метод функциональной диагностики, основанный на регистрации ИК-излучения тела человека.

Существует 2 разновидности термографии:

- контактная холестерическая термография: в методе используются оптические свойства холестерических жидких кристаллов (многокомпонентные смеси сложных эфиров и других производных холестерина). Такие вещества избирательно отражают разные длины волн, что дает возможным получать на пленках этих веществ изображения теплового поля поверхности тела человека. На пленку направляют поток белого света. Разные длины волн по-разному отражаются от пленки в зависимости от температуры поверхности, на которую нанесен холестерик.

Под действием температуры холестерики могут изменять цвет от красного до фиолетового. В результате формируется цветное изображение теплового поля тела человека, которое легко расшифровать, зная зависимость температура-цвет. Существуют холестерики, позволяющие фиксировать разницу температур 0, 1 градус. Так, можно определить границы воспалительного процесса, очаги воспалительной инфильтрации на разных стадиях ее развития.

В онкологии термография позволяет выявить метастатические узлы диаметром 1, 5-2мм в молочной железе, коже, щитовидной железе; в ортопедии и травматологии оценить кровоснабжение каждого сегмента конечности, например, перед ампутацией, опередить глубину ожога и т.д.; в кардиологии и ангиологии выявить нарушения нормального функционирования ССС, нарушения кровообращения при вибрационной болезни, воспалении и закупорке сосудов; расширение вен и т.д.; в нейрохирургии определить расположение очагов повреждения проводимости нерва, подтвердить место нейропаралича, вызванного апоплексией; в акушерстве и гинекологии определить беременность, локализацию детского места; диагностировать широкий спектр воспалительных процессов.