Смекни!
smekni.com

Синергетика (стр. 4 из 7)

9. Специфические особенности синергетики

В интервью по случаю тридцатилетия созданного им междисциплинарного направления Г. Хакен так охарактеризовал специфические особенности синергетики [1]:

Исследуемые системы состоят из нескольких или многих одинаковых или разнородных частей, которые находятся во взаимодействии друг с другом.

Эти системы нелинейны.

При рассмотрении физических, химических и биологических систем речь идёт об открытых системах, далёких от теплового равновесия.

Эти системы подвержены внутренним и внешним колебаниям.

Системы могут быть нестандартными.

В системах происходят качественные изменения.

В этих системах обнаруживаются эмержентные новые качества.

Возникают пространственные, временные, пространственно-временные или функциональные структуры.

Структуры могут быть упорядоченными или хаотическими.

Во многих случаях возможна математизация.

10. Сложное поведение простых систем

Заголовок этого раздела по существу представляет собой «формулу открытия», совершённого в русле синергетических исследований и развеявшего долго державшийся миф о том, что сложное поведение якобы является исключительной прерогативой сложных систем. Обилие элементов, частей или деталей в сложных системах означает, что для их описания требуется огромное количество информации, нередко превышающее объём памяти и возможности её обработки. Возникает неполнота описания и, как следствие, непредсказуемость (и, следовательно, сложность) поведения системы.

На мифе (или добросовестном заблуждении?) о монополии сложных систем на сложное поведение зиждились попытки отождествить сложность системы с числом её элементов — мощностью системы как множества. Несостоятельность такого понимания сложности была убедительно продемонстрирована теорией самовоспроизводящихся автоматов фон Неймана. В его книге [7], реконструированной Берксом по отрывочным записям лекций фон Неймана (Беркс совершил научный подвиг, сравнимый с реконструкцией давно вымерших животных по крохотной детали их скелета, выполненной Кювье), первоначально была описана система, способная к сложному поведению — самовоспроизведению, которая состояла из более чем 200 деталей, но позднее был построен пример самовоспроизводящегося автомата, состоявшего из на порядок меньшего числа деталей.

Сложность — одно из тех интуитивно ясных, но упорно не поддающихся формализации понятий, которые играют важную роль в концептуальном аппарате синергетики. В эпоху Ньютона полагали, будто детерминированность поведения динамической системы исключает возможность сложности. Радость от обретения возможности описания величин не статичных, а изменяющихся во времени (по терминологии Ньютона — флюксий), их производных (по терминологии Ньютона — флюент) и возможности восстановления флюксий по известному соотношению между флюентами, т.е. с помощью решения дифференциальных уравнений, была столь велика, что самая мысль о сложном поведении флюксий казалось кощунственной. Ньютоновская вселенная функционировала наподобие хорошо отлаженного часового механизма, и сложность (тем более хаотичность), казалось, напрочь исключалась из репертуара возможных вариантов поведения динамических систем. Наиболее яркая формулировка ньютоновского детерминизма принадлежит Лапласу и известна под названием «демона Лапласа». Суть её сводится к следующему: «Состояние системы Природы в настоящий момент есть, очевидно, следствие того, каким оно было в предыдущий момент, и если мы представим себе разум («демон»), который в данное мгновенье постиг все связи между объектами Вселенной, то он сможет установить соответствующие положения, движения и общие воздействия этих объектов в любое время в прошлом или в будущем» (1776).

Прозрение пришло много позднее — в конце XIX века. В работе на соискание премии короля Норвегии Оскара Анри Пуанкаре установил причину неинтегрируемости знаменитой проблемы трёх тел — сложное поведение сепаратрис гиперболических особых точек: «Если попытаться представить себе фигуру, образованную этими двумя кривыми [устойчивым и неустойчивым многообразиями седловой особой точки] и их бесчисленными пересечениями, каждое из которых соответствует двояко-асимптотическому решению, то эти пересечения образуют нечто вроде решётки, сети с бесконечно тесными петлями; ни одна из двух кривых никогда не должна пересекать самоё себя, но она должна навиваться на самоё себя очень сложным образом, чтобы пересечь бесконечно много раз все петли сети.

Поражаешься сложности этой фигуры, которую я даже не пытаюсь изобразить. Ничто не является более подходящим, чтобы дать нам представление о сложности задачи трёх тел и, вообще, всех задач динамики, в которых нет однозначного интеграла и в которых ряды Болина расходятся» [8].

На смену старому, ньютоновскому, пониманию детерминизма пришло новое понимание, не исключающее сложное, хаотическое поведение динамических систем и проводившее такой физико-математический оксиморон как «детерминистический или динамический хаос».

В «жизни» динамической системы регулярная динамика не отделена непроницаемой стеной от сложных режимов — от хаоса. Между регулярной динамикой и хаосом существуют переходы, происходящие по тем или иным сценариям. Первоначально устойчивое состояние динамической системы претерпевает бифуркацию — теряет устойчивость и сменяется новым состоянием, которое первоначально устойчиво, но при изменении параметров состояния в дальнейшем также может потерять устойчивость, т.е. претерпеть новую бифуркацию и уступить место новому состоянию. Серия бифуркаций, претерпеваемых динамической системой на пути от регулярной динамики к хаосу, называется сценарием перехода к хаосу.

Отправным пунктом в исследовании проблем перехода к хаосу по общему признанию принято считать работу Ландау [9] «К теории турбулентности» (1944). В ней Л.Д. Ландау рассмотрел возникновение турбулентности при увеличении числа Рейнольдса (основного управляющего параметра в задачах гидродинамики). По сценарию, предложенному Ландау, первичное течение теряет устойчивость относительно колебательного возмущения, воздействующего на течение с некоторой частотой, возникшее осциллирующее вторичное течение, в свою очередь, теряет устойчивость при воздействии на него другого колебательного возмущения с другой частотой. В итоге после многочисленных бифуркаций, которые сопровождаются возникновением всё новых и новых частот, образующих иррациональные отношения, возникает сложный динамический режим — турбулентность.

Хотя Л.Д. Ландау рассматривал гидродинамическую задачу, нарисованная им картина носит столь общий характер, что её с равным основанием можно отнести ко всем динамическим диссипативным системам. Позднее (1948) аналогичные представления были развиты Эбергардом Хопфом в работе «Математический пример, демонстрирующий особенности турбулентности» [10]. Такую картину турбулентности принято называть сценарием Ландау–Хопфа.

В 1963 году американский метеоролог Эдвард Лоренц опубликовал статью «Детерминированное непериодическое течение», в которой изложил результаты численного решения системы трёх нелинейных дифференциальных уравнений», моделирующих динамику жидкости в подогреваемом снизу слое [11]. Основной акцент в анализе полученных результатов Лоренц сделал на взаимосвязи между сложной динамикой и присущей системе неустойчивостью траекторий. Именно в этой работе Лоренц ввёл термин «эффект бабочки».

В 1971 году, опираясь на достижения математического аппарата синергетики —так называемой нелинейной динамики, Давид Рюэль и Флорис Такенс в 1971 г. опубликовали работу «О природе турбулентности» [12]. В ней они подвергли критике сценарий Ландау–Хопфа, указав на то, что уже после 3–4 бифуркаций динамика может стать турбулентной, в частности, у системы может возникнуть характерный для случайного процесса сплошной спектр. Рюэль и Такенс связывали это обстоятельство с возникновением в фазовом пространстве «странного аттрактора» и неустойчивостью траекторий на странном аттракторе. Разумеется, работа Рюэля и Такенса, историческое значение которой отчасти определялось предложенным ими ключевым термином «странный аттрактор», также оказалась уязвимой для критики. Многие вопросы, возникающие в связи с предложенным ими сценарием перехода к турбулентности, пока остаются открытыми.

Особо подчеркнём, что работы Ландау, Хопфа, Рюэля и Такенса, посвящённые гидродинамическим системам, в действительности носят общий характер, и их результаты и выводы распространяются на все динамические диссипативные системы.

Изучение динамического хаоса привлекло внимание исследователей к важному классу математических моделей, в силу исторических причин не пользовавшихся должным вниманием, — к дискретным отображениям, задаваемым рекуррентными соотношениями. К традиционным математическим моделям — дифференциальным уравнениям — дискретные отображения относятся, как часы с дискретной индикацией времени (в роли показаний таких часов выступает индекс, нумерующий последовательные приближения) к часам с непрерывной индикацией времени: зависимость решения дифференциального уравнения непрерывна и (в классических случаях) даже дифференцируема.

При всей своей (во многом кажущейся) примитивности дискретные отображения служат удобными моделями для изучения и демонстрации многих синергетических эффектов и явлений, позволяющих исследователям понять, что происходит в более сложных ситуациях. Динамический хаос возникает уже в простейших нелинейных дискретных отображениях, например, в кусочно-линейных (треугольное отображение или отображение «зуб пилы») и квадратичных (логистическом отображении, или отображении Ферхюльста). Кроме того, на дискретные отображения не распространяется теорема Пуанкаре–Бендиксона, доказанная для дифференциальных уравнений и ограничивающая возможные варианты двумерных динамических систем (недаром А.А. Андронов, стремясь избавиться от ограничительных пут теоремы Пуанкаре–Бендиксона, провозгласил лозунг: «Выйти из плоскости!», честь реализовать который выпала в 1963 г. Эдварду Лоренцу): двумерные дискретные отображения отличаются несравненно бо́льшим разнообразием режимов по сравнению с двумерными динамическими системами, описываемыми дифференциальными уравнениями.