Смекни!
smekni.com

Основы гидродинамики и гемодинамики (стр. 2 из 2)

Закон Пуазейля, таким образом, показывает, что объемная скорость жидкости прямо пропорциональна разнице давления в начале и конце трубки и обратно пропорциональна гидродинамическому сопротивлению:

Вязкость крови

Кровь является взвесью клеток крови в жидкости сложного состава, называемой плазмой. Различают красные клетки крови (эритроциты), белые клетки крови (лейкоциты) и тромбоциты. Плазма - водный раствор электролитов, белков, питательных веществ, продуктов метаболизма и т.п. Объем крови в организме составляет почти 7% объема человеческого тела. Эритроциты занимают около 45 % объема крови, а другие клетки крови - менее чем 1%. Относительный объем клеток крови и плазмы определяют с помощью прибора гематокрита. Это же название используют для определения результатов анализа.

Кровь является более плотной и вязкой, чем вода. В среднем относительная вязкость крови составляет почти 4,5 (3,5-5,4). Относительная вязкость плазмы - 2,2 (1,9 - 2,6). Вязкость крови измеряется в лаборатории с помощью специального прибора - медицинского вискозиметра. Кровь является неньютоновской жидкостью. Но при такой скорости течения, которая поддерживается в сосудах кровеносной системы, вязкие свойства крови можно рассматривать, как для ньютоновских жидкостей.

Вязкость крови зависит, главным образом, от концентрации эритроцитов и меньше - от концентрации белков плазмы. Она зависит также от скорости течения крови. Если скорость течения крови уменьшается, эритроциты собираются в специфические скопления, так называемые ″монетные столбики. Это приводит к повышению вязкости крови. Такой феномен может наблюдаться в мелких кровеносных сосудах, где скорость течения крови небольшая.

Однако существует физиологический механизм, который способствует уменьшению вязкости крови в небольших сосудах, называемый эффектом Фареуса-Линдквиста. Этот эффект объясняется ориентацией эритроцитов вдоль оси сосуда. Эритроциты, формируя цилиндрический осевой ток, скользят по слою окружающей их плазмы крови.

Структура и некоторые биофизические свойства сердечно- сосудистой системы

Сердечно-сосудистая система состоит из сердца и разветвленной замкнутой системы кровеносных сосудов, которые перемещают кровь во все части тела и в сердце. Сосудистая система состоит из системной циркуляции и легочной циркуляции. Кровеносные сосуды включают артерии, капилляры и вены. По артериям кровь поступает в органы и ткани. Через вены перемещается обратный поток крови. Каждая большая артерия, начинающая с аорты, ветвится, формируя меньшие артерии, которые, в свою очередь, разветвляются дальше. Наименьшие артерии называются артериолами. Кровь, в конце концов, достигает капилляров, где происходит обмен веществ с окружающими тканями. Затем капилляры собираются в венулы и вены, которые собираются в полые вены, откуда кровь из тканей поступает в сердце.

Основные параметры циркуляции крови

В клинике наиболее часто исследуют давление и скорость течения крови.

Давление крови в артериях колеблется от максимального во время сокращения сердца (систолы) до минимального во время расслабления (диастолы). При каждом сердцебиении давление крови поднимается до систолического уровня, а между ударами падает до диастолического уровня. Поэтому артериальное давление определяют как максимальное/минимальное значение (систолическое/диастолическое). Обычно его измеряют в миллиметрах ртутного столба. Среднее значение артериального давления для здоровых взрослых людей в состоянии покоя составляет 120/60 мм.рт.ст.

Сфигмоманометр – наиболее часто используемый прибор для измерения давления крови. Сфигмоманометр состоит из надувной манжеты, в которую с помощью резиновой груши нагнетают воздух, увеличивая в ней давление. Эта система связана с манометром, по шкале которого определяют артериальное давление пациента. Манжету фиксируют на плече, фонендоскоп устанавливают в локтевом сгибе.

Давление в манжете увеличивают до тех пор, пока в артерии не прекратиться ток крови. Затем давление в манжете медленно уменьшают. Когда оно достигнет максимального (систолического) значения, артерия частично открывается. Поскольку сечение артерии в этот момент меньше, чем обычно, в ней создается высокая скорость течения крови, и это течение является турбулентным. Поэтому фонендоскопом можно услышать звуки - тоны Kороткова.

Если продолжать уменьшать давление в манжете, артерия в течение некоторого периода остается еще достаточно сжатой, по сравнению с нормальным состоянием. Следовательно, тоны Короткова слышны до тех пор, пока давление в манжете не достигнет минимального (диастолического) значения. В этот момент кровь начинает свободно проходить через артерию. В артерии восстанавливается ламинарное течение крови, и тоны Короткова исчезают. Таким образом, измеряют максимальное и минимальное давление крови.

Скорость течения крови измеряют, используя эффект эходоплерографии. Как давление крови, так и скорость ее течения являются важными диагностическими показателями.

Давление и скорость течения крови в разных отделах кровеносной системы

Самое высокое давление в кровеносной системе в сердце. По закону Пуазейля: P1 - P2 = QR. Допустим, что P1 – давление крови в аорте и P2 - давление крови в полой вене, которое составляет около нуля мм.рт.ст. Следовательно, давление крови в аорте определяется двумя переменными.

(1) Первая из них - объемная скорость жидкости (Q) в аорте, величина которой зависит от частоты, мощности сердечных сокращений и объема в кровеносной системе.

(2) Вторая – общее сопротивление (R) кровеносной системы.

Давление крови уменьшается с расстоянием от сердца из-за трения в кровеносных сосудах. Давление крови является мерой энергии, которую сообщает крови сердце. Эта энергия рассеивается при преодолении сопротивления кровеносных сосудов.

Гидродинамическое сопротивление разных частей кровеносной системы не одинаково. Сопротивление аорты и больших артерий составляет только около 19% общей величины сопротивления в системе. Самая большая доля сопротивления принадлежит артериолам (50%) и капиллярам (25%)). Таким образом, на сосуды, длина которых составляет не несколько миллиметров, приходится более половины общего сопротивления циркуляторного русла. Сопротивление вены составляет около 7% общей величины сопротивления в кровеносной системе.

Величина гидродинамического сопротивления определяет падение давления крови по ходу сосудистого русла (Рис. 2). Среднее давление крови немного снижается в артериях (по отношению к давлению в аорте), но резкое его падение наблюдается в артериолах и капиллярах. Сопротивление артериол является одним из основных факторов, определяющих величину артериального давления. Изменения давления крови в венах очень небольшие.

Рис. 2. Среднее давление крови в разных отделах кровеносной системы. 1. Аорта. 2. Артерии. 3. Артериолы. 4.Капилляры. 5. Вены.

Средние величины давления крови (мм.рт.ст.): 100 - в небольших артериях, 95 - при переходя из артерий в артериолы, 35-70 - при поступлении крови из артериол в капилляры, 20-35 – в больших венах, 10 и менее – в мелких венах.

Скорость течения крови также значительно различается в разных отделах кровеносной системы (Рис. 3). Средняя величина скорости течения крови определяется уравнением неразрывности: она обратно пропорциональна общей площади поперечного сечения параллельно соединенных сосудов. Например, площадь поперечного сечения аорты составляет около 3,5-4,5, тогда как суммарная площадь поперечного сечения капилляров - в 600 раз большая. Поэтому средняя скорость крови составляет 0,2 в аорте и только 0,0003 в капиллярах. Небольшая скорость течения крови в капиллярах имеет большое значение для обмена веществ между кровью и окружающими тканями.

Рис.3. Средняя скорость течения крови в разных отделах кровеносной системы.

1. Аорта. 2. Артерии. 3. Артериолы. 4. Капилляры. 5. Вены.