Смекни!
smekni.com

Кинематический анализ механизма транспортирования ткани (стр. 2 из 17)

Метод “инверсии” (иначе ‑ метод “перемены ведущего звена”, метод “замены начального звена”) [2] основан на свойстве некоторых механизмов, состоящих из групп Ассура, менять свой класс в зависимости от того, какое из звеньев механизма принято за входное. Для некоторых механизмов метод позволяет получить структуру с более простыми группами Ассура (меньшее число звеньев): например, шестизвенный механизм третьего класса можно рассматривать как механизм второго класса. Примеры применения этого метода связаны лишь с шестизвенным механизмом с трехповодковой группой.

Известен метод “размыкания кинематической цепи” (метод геометрических мест, метод ложных положений), разработанный И.И.Артоболевским [13]. Следуя этому методу, в кинематической цепи размыкаются один или несколько шарниров, что позволяет вместо одной, сложной по структуре цепи, рассматривать несколько более простых. Для каждого разомкнутого шарнира строятся возможные геометрические места его положений, как принадлежащего двум различным более простым цепям, которые он ранее соединял между собой. Действительное положение разомкнутых шарниров (а, следовательно, и всей цепи) определится пересечением соответствующих геометрических мест точек размыкания.

По методу “вставки звена” предложенным В.В.Добровольским [3], из исследуемой кинематической цепи (механизм или группа Ассура) отбрасывается одно или несколько звеньев, пока оставшаяся цепь не распадется на ряд механизмов более простой структуры. Звеньям полученных механизмов придают движение, определяя такие их положения, при которых можно будет “вставить” удаленное звено.

Интерес представляет метод “условных обобщенных координат”, предложенный У.А.Джодасбековым [8]. Этот метод представляет собой объединение метода “инверсии” с методом “вставки звена” в численно‑аналитической форме с использованием метода “преобразования координат” в матричной форме. Метод позволяет провести анализ группы Ассура любого класса и порядка, с его помощью могут быть решены задачи о числе вариантов сборки механизма, условиях существования кривошипа и др.

Для решения задачи о положениях можно применять метод “треугольников” О.Г.Озола [9]. Метод связан с возможным представлением любого замкнутого контура в виде треугольников, причем эти треугольники могут быть, как изменяемыми, так и неизменяемыми. Расчетная схема обычно состоит из трансцендентных уравнений трех типов и требует для своего решения знания приближенного положения звеньев. Автор предлагает решать систему численным способом. Известна другая форма применения метода “треугольников” [4].

Как правило, каждый из изложенных методов предназначен для решения задачи анализа конкретного класса механизмов, либо структурных групп. Пока не существует единого способа, который мог бы позволить решить задачу кинематического анализа рычажного механизма произвольной структуры в полной постановке.

Перейдем к анализу методов синтеза рычажных механизмов, в развитие которых большой вклад внесли: И.И.Артоболевский, З.Ш.Блох, А.З.Зиновьев, Н.И.Левитский, Э.Е.Пейсах и др. Целью кинематического синтеза рычажного механизма является определение постоянных параметров его кинематической схемы, исходя из сформулированной заранее постановки задачи синтеза. Методы решения задач синтеза рычажных механизмов, как правило, являются приближенными. По способу реализации их можно разделить на аналитические, графоаналитические и графические. Ниже рассмотрим только аналитические методы, которые можно разделить на аппроксимационные и оптимизационные.

Рассмотрим подробнее исследования в области аналитического синтеза многозвенных плоских рычажных механизмов. В цикле работ Э.Е.Пейсаха [10, 11] на основе кинематических возможностей шестизвенного шарнирного механизма второго класса первой модификации поставлены и аналитически решены часто встречающиеся на практике типы задач синтеза этого механизма, в том числе задача о выстое выходного звена в крайнем положении. Задачи синтеза шестизвенного шарнирного механизма второго класса второй модификации более трудны. Особый интерес представляет задача синтеза механизма с выстоем выходного звена в крайнем или промежуточном положении. Известны различные подходы к решению указанной задачи: одни авторы ищут на шатуне базового четырехзвенника точку, описывающую дугу окружности [12], другие используют l‑образный механизм Чебышева [13].

Данная задача может быть решена с помощью квадратического приближения, при этом В.И.Доронин [14] использовал семь параметров, а Э.Е.Пейсах [15] - три. В одной группе работ механизм шестизвенника делится на диаду и четырехзвенник, в шатунной плоскости которого ищется круговая квадратическая точка, с целью последующего присоединения диады. Для поиска круговой квадратической точки используется метод инверсии или метод обращения движения [16]. В другой группе работ шестизвенник также делится на диаду и четырехзвенник, но синтезируется диада [17]. В третьей группе работ в механизме шестизвенника “изымается” одно из звеньев и ищется возможность его “вставки”. Здесь можно отметить метод “вставки двухпарного звена” предложенный Э.Е.Пейсахом [15].

В работе [18] применительно к синтезу регулируемых механизмов, воспроизводящих заданные шатунные кривые, излагается метод “комплексных чисел”. Задача решена аналитически для траекторий, точки которых разделены конечными интервалами времени, а также для траекторий имеющих бесконечно близкие точки. Предлагаемый метод позволяет синтезировать регулируемые механизмы, реализующие движение изображающей точки вдоль различных аппроксимаций прямых линий, траекторий с различной кривизной, касательных к траектории, а также некоторых произвольных траекторий. Рассмотрены четырехзвенные механизмы и предложены методы их синтеза.

Ю.Л.Саркисян [19] предлагает выполнять синтез плоских шарнирных механизмов методом квадратического приближения функции. Метод квадратического приближения для синтеза четырех‑ и шестизвенного шарнирных направляющих механизмов рассмотрен в работе [20].

В ряде работ [21], [22] для синтеза шатунной кривой и статического расчета механизма применяется метод Гаусса. С целью воспроизведения плоских кривых и при кинематическом синтезе кривых высших порядков применительно к четырехзвенным механизмам [23] использовался ослабленный метод наименьших квадратов Левенберга.

Большое количество работ посвящено решению задач оптимизационного синтеза рычажных механизмов. В работах [24],[25],[26] для формирования траекторий и воспроизведения функций, а также для решения задач управления при помощи плоских механизмов были использованы методы случайного поиска.

Вклад в задачу оптимального синтеза механизмов внесли R.L.Fox и K.D.Willmert [28]. Они ввели ограничения типа неравенств, которые оказались подходящими для применения процедуры динамического программирования [29]. R.E.Gustavson [30] использовал весовые коэффициенты к трем необходимым критериям отбора решений задачи Бурместера с четырьмя кратно‑раздельными положениями механизма. В работе [31] D.W.Levis и C.K.Gyory изложили другой оригинальный подход к задаче синтеза направляющих механизмов, связанный с использованием “затухающей” итерации по методу наименьших квадратов.

В работе C.Bagsi и J.Lee [32] предложен метод оптимального синтеза плоских механизмов, воспроизводящих траектории и положения твердого тела. Метод разработан для плоского четырехзвенного механизма, у которого неизвестны шесть или восемь размеров. Искомые размеры оптимального механизма определяются путем минимизации ошибки в уравнениях замыкания контура для N расчетных точек траектории, а также в уравнении механизма, где не ограничено число неизвестных размеров системы. Линеаризация расчетных уравнений выполняется методом линейной суперпозиции. Решение уравнений не требует итераций и дает ряд оптимальных механизмов с различной степенью приближения.

Вариационный метод синтеза одно‑ и многоконтурных плоских механизмов с одной степенью свободы, предназначенных для управления движением твердых тел через заданные положения на плоскости предложен Э.Е.Пейсахом [33]. Посредством минимизации целевой функции, представляющей собой сумму квадратов ошибок в вычислительных координатах двух точек тела, определены оптимальные размеры механизма. Решение расчетных уравнений производится матричным методом итерации и релаксационным методом Гаусса. Для плоского механизма, воспроизводящего плоскую траекторию, задачу синтеза удается свести к задаче оптимизации, накладывая ограничения, обеспечивающие совмещение двух точек тела. Для управления движением твердого тела и воспроизведения траектории точки этого тела синтезированы шестизвенный механизм Стефенсона типа I и плоский четырехзвенный шарнирный механизм.

В статье [34] рассмотрен процесс оптимизации, в котором исследованы результаты, полученные при моделировании на АВМ движения плоского шарнирного четырехзвенника. Показана сложность аналитического выражения для шатунной кривой, что обусловливает необходимость применения сложного метода при синтезе этой кривой. Показано, что минимизация ошибки согласования между требуемой и полученной шатунными кривыми достигается с помощью комбинации релаксационного и градиентного методов.

D.W.Levis и C.K.Gyory в работе [35] показывают, что траектория точки шатуна плоского механизма является кривой, которую можно описать рядом парных координат. Последовательный подбор параметров конкретного механизма осуществляется методом “затухающих наименьших квадратов”. Последовательное применение этого метода дает оптимальное приближение к заданной кривой, описываемой рядом парных координат. В качестве примера этот метод был применен к четырехзвенному механизму.