Смекни!
smekni.com

Перевод электроснабжения подземных участков шахты Интинская на U=1140В (стр. 4 из 5)

В настоящее время для подъемных машин находят применение коммутаторы двух типов: с широтно-импульсным управлением на стороне переменного тока и фазовым управлением. Коммутаторы с широтно-импульсным управлением отличаются простотой схемного решения, коммутаторы с фазовым управлением обеспечивают более благоприятное протекание электрорегулирования скорости. Поэтому первые рекомендуется применять на малых подъемных машинах, оборудованных двигателями небольшой мощности, а вторые – на подъемных машинах с двигателями средней и большой мощности.

Силовая часть коммутатора содержит шесть тиристоров которые объединены в три пары, соединенные между собой в треугольник (рис) и подключенные к роторным резисторам подъемного двигаетлся ПД.

Коммутатор с фазовым управлением содержит усилитель У сигнала ошибки по скорости ∆U и три идентичных канала импульсно-фазового управления К1-К3, каждый из которых управляет двумя встречно-параллельно включенными тиристорами.

В развернутом виде приведена только схема канала К1, управляющего тиристорами VS1 и VS2, а каналы управления К2 и К3 тиристорами VS3, VS4 и vS5, VS6 изображены в виде блоков.

Рис. Принципиальная схема тиристорного коммутатора с фазовым управлением.

На вход усилителя У, являющегося общим для всех каналов управления, через резистор R1 подается сигнал ∆U, на его выходе формируется сигнал управления Uу, который связан с углом открывания транзисторов пропорциональной зависимостью. На транзисторе VT1 выполнен усилитель напряжения, а транзисторе VT2 – эмиттерный повторитель. Максимальные значения напряжений коллекторов транзисторов VT1 и VT2 ограничиваются стабилитронами VD1 и VD2. Переменным резистором R2 устанавливается необходимое смещение на входе усилителя, которое может быть как положительным, так и отрицательным. Поскольку сигнал смещения алгебраически суммируется с сигналом ∆U, то движение с требуемой малой скоростью может осуществляться при различных соотношениях между сигналами заданной и действительной скоростей.

Коммутатор вводится в работу подачей напряжения в его схему управления в момент подключения подъемного двигателя к питающей сети. При этом темп нарастания момента двигателя до величины, определяемой сигналом ∆U, для снижения динамических нагрузок формируется зарядом емкости С3 – через резисторы R8 и R9. В результате в момент подачи напряжения в схему управления обеспечивается максимальная величина сигнала Uу, что соответствует закрытому состоянию тиристоров.

По окончании периода дотягивания напряжение со схемы управления коммутатором снимается с некоторым упреждением, и поэтому сначала закрываются его тиристоры, а затем происходит отключение подъемного двигателя от сети переменного тока. Это способствует стопорению машины, а разрываемый реверсором ток соответствует полностью введенным роторным резисторам, и поэтому подгорание его контактов минимально.

Если производится дотягивание недогруженного подъемного двигателя, его момент даже при полностью введенных роторных резисторах может оказаться чрезмерно большим и будет происходить увеличение частоты вращения сверх заданной величины. В этом случае в работу вмешивается механический тормоз, компенсирующий избыточную часть двигательного момента. Согласование зон работы коммутатора и механического тормоза происходит переменным резистором R2.

6. Преимущества и недостатки автотрансформаторов.

Автотрансформатор – это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь.

Проходная мощность Sпр автотрансформатора представляет собой всю передаваемую мощность из первичной цепи во вторичную.

Расчетная моность Sрасч представляет собой мощность передаваемую из первичной во вторичную цепь магнитным полем, от её величины зависят размеры и вес трансформатора.

В трансформаторе вся проходная мощность является расчетной, т.к. между обмотками трансформатора существует лишь магнитная связь.

А автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует ещё и электрическая – поэтому расчетная мощность в автотрансформаторе составляет лишь часть проходной: Sпр=Sэ+Sрасч

Таким образом автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами:

· Меньшим расходом активных материалов (медь и электротехническая сталь).

· Более высоким КПД

· Меньшими размерами и стоимостью.

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации RA<2.

При большом значении коэффициента трансформации преобладающее значение имеют недостатки трансформатора:

· Большие токи к.з. в случаях понижающего автотрансформатора, поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включенных в цепь автотрансформатора.

· Электрическая связь стороны ВН со стороной НН; это требует усиленной лектрической изоляции всей обмотки.

· При использовании автотрансформаторов в схемах пониженного напряжения между проводами сети НН и землей возникает напряжение, примерно равное U между проводом и землей на стороне ВН.

· В целях обеспечения эл. безопасности обслуживающего персонала нельзя применять автотрансформаторы для понижения напряжения сетей ВН до значений НН, подводимого непосредственно к потребителям.

7. Принципиальная схема преобразователя частоты со звеном постоянного тока и возможности использования в приводе.

Наиболее экономичный и эффективный способ регулирования скорости электропривода с асинхронным двигателем – изменение частоты питающего напряжения. Поэтому широкое распространение получили преобразователи частоты с промежуточным звеном постоянного тока.

В преобразователе частоты с промежуточным звеном постоянного тока переменное напряжение сети сначала выпрямляется с помощью управляемого выпрямителя, а затем через фильтр подается на автономный инвертор, который вновь преобразует постоянное напряжение в переменное, но с регулируемой частотой.

В схеме преобразователя частоты с промежуточным звеном постоянного тока имеется выпрямитель V, который может быть управляемый или неуправляемый. Если регулирование напряжения на нагрузке осуществляется автономным инвертором Uz или специальным импульсным преобразователем в цепи постоянного тока, то выпрямитель U может быть неуправляемым.

Наиболее ответственным узлом в преобразователях частоты с промежуточным звеном постоянного тока является автономный инвертор. Дело в том, что этот инвертор работает на автономную нагрузку, в которой отсутствует источник ЭДС. Поэтому автономный инвертор снабжен узлом искусственной коммутации, который прерывает ток в вентиле и включает его в нужный момент времени в соответствии с работой схемы управления.

Преобразователь частоты со звеном постоянного тока позволяет изменять частоту на нагрузке как вверх, так и вниз относительно частоты сети в широком диапазоне.

Широкое применение преобразователей частоты с промежуточным звеном постоянного тока нашли в приводе угольных и проходческих комбайнов, а также в приводах где отсутствуют тормозные режимы.

8. Определение расчетных электрических нагрузок.

Определение расчетных электрических нагрузок выполняется от низших к высшим ступеням системы электроснабжения по отдельным расчетным узлам в сетях с напряжением до 1000 В и выше. В настоящее время применяют несколько методов определения расчетных электрических нагрузок:

1. Метод, определяющий расчетную нагрузку путем умножения установленной мощности на коэффициент, меньший единицы,

Pp=K1PH.

2. Метод, определяющий расчетную нагрузку путем умножения средней нагрузки на коэффициент, больший или равный единице,

Pp=K2Pc

или путем добавления к средней нагрузке некоторой величины, характеризующей отклонение расчетной нагрузки от средней,

Pp=Pc+σ.

К первому методу следует отнести метод определения расчетной нагрузки по установленной мощности и коэффициенту спроса. Ко второй группе относятся следующие методы определения расчетной нагрузки: по средней мощности и коэффициенту формы графика нагрузки; по средней мощности и коэффициенту максимума нагрузки (метод упорядоченных диаграмм показателей графиков нагрузки); по средней мощности и среднему квадратическому отклонению (статистический метод). Существуют и другие методы определения расчетных нагрузок: по удельному расходу электроэнергии; по удельной мощности.

Общие рекомендации по выбору метода определения расчетных электрических нагрузок следующие:

1. Для определения расчетных нагрузок по отдельным группам приемников и узлам напряжением до 1000 В следует использовать метод упорядоченных диаграмм и статистический метод.

2. Для определения расчетных нагрузок напряжением выше 1000 В необходимо применять методы расчета, основанные на использовании средней мощности и коэффициентов Км, Кф и др.

3. При ориентировочных расчетах возможно применение метода расчета по установленной мощности и коэффициенту спроса, а в некоторых частных случаях – по удельным показателям потребления электроэнергии.

Несмотря на рекомендации и требования СН 174-75 о применении Ки и Км для определения электрических нагрузок, пока для угольных шахт действует методика расчета нагрузок по установленной мощности и коэффициенту спроса. Поэтому для группы однородных по режиму работы приемников расчетная нагрузка для угольных шахт определяется из выражений: