Смекни!
smekni.com

Фильтрация газов(баротермический эффект) (стр. 3 из 8)

1.3. Описание задачи

Рассмотрим температурную задачу в полярной системе координат, где среда представлена одной бесконечной областью (рис.1). Область является пористой и насыщена газом. Будем рассматривать случай радиального движения газа из бесконечности к скважине радиуса

, ось которой совпадает с осью

Рис. 1. постановка задачи

При описании температурной задачи примем следующие допущения:

- пористый пласт считается однородным и изотропным по гидродинамическим и теплофизическим свойствам;

- давления в скважине и на контуре питания остаются неизменными;

- породы, окружающие пласт предполагаются непроницаемыми и однородными по своим теплофизическим свойствам;

- температуры газа и скелета пористой среды в каждой точке совпадают;

- естественное тепловое поле Земли считается стационарным;

- пласт расположен на глубине порядка 1 – 2 км, поэтому суточные и сезонные колебания температуры не достигают пласта;

- адиабатическим эффектом, обусловленным гравитационным полем пренебрегаем.

1.4. Математическая постановка задачи

Математическая постановка задачи включает температурную задачу, гидродинамическую задачу, уравнение состояния и соотношение для поля скорости конвективного переноса тепла. Ниже рассматриваются соответствующие постановки задач.

1.4.1. Математическая постановка температурной задачи

Математическая постановка задачи для всех областей представляется уравнением (I.2.1). Температурное поле в этом случае описывается уравнением Чекалюка в пренебрежении теплопроводностью и адиабатическим эффектом и с учетом закона фильтрации Дарси:

.

(I.4.1.1)

Будем рассматривать задачу при следующих условиях температуры:

начальном

,

(I.4.1.2)

и граничном

.

(I.4.1.3)

1.4.2. Математическая постановка гидродинамической задачи

Математическая постановка гидродинамической задачи в полярной системе координат примет следующий вид. Учитывая, что для осесимметричного течения поле давления является функцией координаты r уравнение можно представить в виде:

,

(1.4.2.1)

Будем рассматривать задачу при следующих условиях. Пусть PC – давление на границе контура питания. При значении радиуса, равном радиусу контура питания

,

(1.4.2.2)

давление поддерживается равным Рс:

,

(1.4.2.3)

Pс – давление на контуре питания.

При значении радиуса, равном радиусу скважины

,

(1.4.1.3)

давление поддерживается равным PW:

,
(1.4.1.4)

где PW – давление в скважине.

1.4. Основные идеи метода характеристик[6]

В данном разделе рассмотрим метод характеристик. Любое линейное дифференциальное уравнение второго порядка (при двух независимых переменных) может быть записано в следующем виде:

(1.4.1)

где а, b, с, d, e, f, gзаданные непрерывные функции от x и y (или в частном случае, постоянные).

Попытаемся упростить это уравнение с помощью замены независимых переменных:

(1.4.2)

Здесь x и h — новые независимые переменные. Функции j и y, связывающие новые переменные со старыми, будут подобраны позднее; пока же мы будем считать их дифференцируемыми нужное число раз. Кроме того, будем считать, что система уравнений (1.4.2) может быть однозначно разрешена относительно х и у; это надо понимать следующим образом: если функции j и y и отображают некоторую область G плоскости Оху в область G* плоскости Oxh, то при этом каждой точке (x ,h) области G* соответствует только одна точка области G (иначе говоря, отображение области G на G*, даваемое функциями j и y, является взаимно однозначным). Как известно, для этого достаточно, чтобы якобиан преобразования (т. е. определитель

) нигде в области G не обращался в нуль.

Для того чтобы сделать требуемую замену переменных, выразим частные производные от функции u по х и у через производные от и по x и h:

(1.4.31)

(1.4.32)

Это записано на основании правила дифференцирования сложной функции от двух переменных (здесь u зависит от x и h, которые, в свою очередь, зависят от x и у). Для того чтобы выразить

, через производные по x и h, учтем формулу (1.4.31) и применим снова правило дифференцирования сложной функции:

Следовательно,

(1.4.41)

Аналогично найдем:

(1.4.42)

(1.4.43)

Правые части равенств (1.4.31), (1.4.32), (1.4.41), (1.4.42), (1.4.43) представляют собой линейные функции относительно частных производных

,
Подставляя u'x, u'y, u'xx,... из этих формул в уравнение (1), мы получим снова линейное уравнение второго порядка с неизвестной функцией и и независимыми переменнымиx и h:

(1.4.5)

где

(1.4.5’)

a

функция, линейная относительно иx , uh , u .

Уравнение (1.4.5) становится особенно простым, если в нем коэффициенты а и с окажутся равными нулю. Для того чтобы первоначально заданное уравнение (1.4.1) можно было привести к такому простому виду, надо в нем сделать замену переменных

подобрав функции j и y так, чтобы они являлись решениями уравнения:

(1.4.6)

Это уравнение является нелинейным уравнением в частных производных первого порядка. Следующая теорема покажет, как связаны его решения с общим решением некоторого обыкновенного уравнения.