Смекни!
smekni.com

Види теплогенераторів (стр. 7 из 11)

Тому під час проектування і експлуатації котельних агрегатів намагаються забезпечити якомога рівномірніше обігрівання паралельно включених труб циркуляційного контура. Зокрема з цією метою екранні труби виділяють в окремі секції, розміщені по кутках топки.

Ненормальним вважається такий режим циркуляції, коли труба працює з граничною, близькою до одиниці, кратністю циркуляції. Цей режим небезпечний тому, що на вихідній ділянці труби інтенсивно відкладаються солі, що може призвести до швидкого перепалу. Щоб запобігти цьому, циркуляційні контури підбирають так, щоб загальна кратність циркуляції їх була не менше від трьох.

У горизонтальних і мало похилених грійних трубах може відбуватись розшарування пароводяної суміші і рух води в нижній частині, а пари – у верхній, що призведе до перегрівання стінки і т.д. При досить високих швидкостях води й пари розшарування не буває (сума зведених швидкостей води й пари повинна бути більшою за певну величину, що залежить від тиску). В опускних трубах для надійності циркуляції не можна допускати пароутворення.

У сучасних агрегатах, якщо не розглядати нестаціонарний режим, що супроводжується спадом тиску в котлі, ця умова витримується, бо опускні труби не обігріваються. Проте треба стежити, щоб у них не виникало кавітації – утворення пари на вхідній ділянці опускних труб через спад тиску в цьому місці, що зумовлюється втратою напору на створення вхідної швидкості.

Розрахунок циркуляції грунтується на тому, що при усталеному режимі рушійний напір дорівнює сумі опорів, що виникають при рухові води й пароводяної суміші. Загальна схема його може бути показана на прикладі найпростішого контура, опір якого складається з опорів підйомної DРпід і опускної DРоп труб (опори, що виникають при рухові води в барабанах, дуже малі). Тому

Р = DРпід + DРоп кг/м2.

Різницю між рушійним напором і опором підйомної труби називають корисним напором РРпід = Ркор. Отже,

Ркор = DРоп кг/м2.

Ркор і DРоп функції кількості циркулюючої води, Ркор = ¦1(Gц) і DРоп= ¦2(Gц). Мета першого етапу розрахунку циркуляції – визначити корисний напір, при якому працює даний контур. Це завдання зручно розв'язати графоаналітичним способом, взявши кілька значень Gц і побудувавши криві Ркор = ¦1(Gц) і DРоп= ¦2(Gц).

Визначивши корисний напір, при якому працює контур, що складається з великої кількості паралельно включених грійних труб, порівнюють його з величинами корисних напорів застою і перекидання, знайденими в припущенні погіршеного обігрівання якоїсь труби розрахункового контура. Ці величини (як питомі напори, віднесені до 1 м висоти труби) дістають з номограм, приведених у нормах розрахунку циркуляції води в парових котлах. Якщо робочий корисний напір менший від корисних напорів застою і перекидання, то контурможна вважати надійним. Він витримає перевірку на неможливість утворення вільного рівня і перекидання циркуляції.

3.2 Одержання чистої пари

Для надійної і економічної роботи парових турбін треба підтримувати постійні параметри пари (її тиск і температуру) і забезпечувати високу її чистоту. Постійні параметри вироблюваної котлоагрегатом пари підтримують автоматичним регулюванням температури перегрітої пари, подачі палива, повітря, живильної води та ін.

У прямотокових котлах вода випаровується без залишку, при цьому частина розчинених у ній речовин відкладається на поверхнях нагріву котла і пароперегрівника, друга частина переходить у пару. При надвисоких і надкритичних тисках пара може розчиняти багато кремнекислої і солей натрію і цим перевищуватиме допустиму концентрацію їх у парі.

Основною причиною забруднення солями пари в барабанних котлах з природною циркуляцією є механічне винесення парою краплинок котлової води. Вологість пари залежить від середньої швидкості її надходження через дзеркало випаровування в паровий простір і від висоти парового простору, що характеризується навантаженням дзеркала випаровування

м32 × год.

і напругою парового об'єму

м23× год,

де D – витрата пари, кг/год;– питомий об'єм насиченої пари, м3/кг; F – площа дзеркала випаровування, м2; U – об'єм парового простору, м3.

При звичайних конструктивних розмірах барабанів і при нормальній роботі внутрішньобарабанного обладнання сучасні котлоагрегати дають пару з дуже невеликою вологістю 0,01–0,03%.

Утворення чистої пари при даній якості живильної води регулюється зниженням концентрації солей у котловій воді, застосуванням ефективного обладнання для сепарації вологи від пари, промиванням пари водою, що містить мало солей.

Під час роботи в котел з живильною водою вносять солі, з яких лише незначна частина виноситься з котла парою. Щоб сольовий баланс не перевищував норми, солі треба видаляти з котла. Це відбувається за допомогою так званого безперервного продування.

Постійна концентрація солей у котловій воді повинна бути нижчою від критичного солевмісту води, при якому різко зростає вологість і солевміст пари.

Ефективно розв'язав це завдання Е. І. Ромм, який запропонував метод східчастого випаровування води в парових котлах. За цим методом котел поділяють на відсіки. Живильна вода подається в перший (чистий) відсік. З нього продукти продування надходять в другий (солоний) відсік. У першому відсіку, таким чином, знижується концентрація солей. При однаковому продуванні котла при двосхідчастому випаровуванні 80% пари утворюється з води, що містить 840 мг/л солей, і лише 20% – з води з солевмістом 4200 мг/л, а без ступеневого випаровування всі 100% пари утворюються з води, що містить 4200 мг/л солей.

Східчасте випаровування має можливість при даній величині продування дістати чистішу пару або при даній якості пари істотно зменшити величину продування.

Сепараційне обладнання призначено зменшити вологість насиченої пари, а разом з тим – і її солевміст. Воно має гасити кінетичну енергію потоку пароводяної суміші, що надходить у барабан, відділяти основну масу води від пари і рівномірно розподіляти пару в барабані для більш ефективної природної сепарації краплинок вологи в паровому просторі барабана.

Сепараційне обладнання ОРГРЕС із зануреним дірчастим листом. Пароводяна суміш, що надходить по трубах, глухим щитом спрямовується у воду. Для рівномірного навантаження дзеркала випаровування і парового простору барабана під водою встановлюється дірчастий лист. Живильна вода подається по трубі над дірчастим листом, що сприяє промиванню пари. Таку схему доцільно застосовувати при помірних концентраціях солей у котловій воді.

При високому солевмісті котлової води і схильності її до піноутворення застосовують внутрішньобарабанні циклони. Пароводяна суміш з коробів 2 підводиться тангенціальне до циклонів 7, плівка виділеної в циклоні води стікає вниз, а пара з циклону надходить у паровий простір барабана. Крім внутрішньобарабанних застосовуються також виносні циклони, які працюють дуже ефективно.

4. Пароперегрівники. Водяні економайзери. Повітропідігрівники

4.1 Пароперегрівники

У пароперегрівнику пара перегрівається до заданої температури. З підвищенням тиску і температури перегрітої пари частина теплоти, передана в пароперегрівник, відносно загального приросту ентальпії води в агрегаті дуже зростає і пароперегрівник стає одним з основних теплосприймальних елементів котельного агрегату.

Для виготовлення труб-пакетів пароперегрівника, що працюють у дуже важких температурних умовах, застосовуються дорогі леговані сталі.

За видом теплообміну пароперегрівники поділяються на конвективні, напіврадіаційні і радіаційні; за розміщенням змійовиків – на вертикальні і горизонтальні.

У старих конструкціях котлів застосовувались конвективні пароперегрівники, розміщені за потужним котельним пучком у ділянці помірних температур газів. Конструктивна схема їх була дуже проста, вони складались з горизонтальних або вертикальних змійовиків, приєднаних до колекторів (камер) насиченої і перегрітої пари розвальцьовкою.

У сучасних агрегатах застосовуються більш складні за схемою і конструкцією комбіновані пароперегрівники, що складаються з радіаційної, напіврадіаційної і конвективної частин.

Характеристика перегрівника – це залежність температури перегрітої пари від міри навантаження котла. У конвективному перегрівнику із зростанням навантаження температура перегрітої пари підвищується, в радіаційному, навпаки, знижується, напіврадіаційний перегрівник має плавну характеристику, температура пари на виході з нього із зміною навантаження змінюється в невеликих (до 10° С) межах.

Розмір поверхні нагріву і умови роботи труб конвективного перегрівника залежать від прийнятої схеми руху пари і димових газів. Перевага протитокової схеми – більш високий середній температурний напір у ділянці перегрівника і через це менша поверхня нагріву його; недолік – важчі умови роботи металу останніх за ходом пари ділянок змійовика. При прямотоковій схемі умови роботи металу полегшуються, але потрібна більша поверхня нагріву перегрівника. Щоб поєднати переваги тієї і другої схем, застосовують змішану схему комбінованої течії.

З барабана, котлоагрегату високого тиску ПК-10 з вертикальними змійовиками, пара по перепускних трубах, розміщених під стельовим перекриттям котла, надходить у колектор насиченої пари, з нього – в змійовики другої за ходом газів частини перегрівника, а потім – у проміжний колектор. У широкому по фронту агрегаті великої потужності треба вживати заходів для того, щоб забезпечити теплову й температурну рівномірність роботи змійовиків перегрівника. З цією метою пару перекидають з колектора в бічні короткі колектори, з яких пара надходить у бічні пакети змійовиків першої за ходом газів частини перегрівника, збирається в змішувальному колекторі, виходять з нього в центральний пакет змійовиків і потім надходить у центральний вихідний колектор перегрітої пари.