Смекни!
smekni.com

Квантовый выход светочувствительных структур полупроводник-металл-диэлектрик (стр. 2 из 3)

Обнаружив в 1922 году во время своих ночных радиовахт свечение кристаллического детектора, этот, тогда еще 18-летний, радиолюбитель не ограничился констатацией «странного» факта, а незамедлительно перешел к оригинальным экспериментам. Стремясь получить устойчивую генерацию кристалла, он пропускал через точечный контакт диодного детектора ток от батарейки. То есть имел дело не с чем иным, как с прототипом полупроводникового прибора, названного впоследствии светодиодом. Весь мир заговорил об «эффекте Лосева», на практическое применение которого изобретатель успел получить (до своей гибели на войне в 1942 г.) четыре патента.

С 1951 года центр по разработке «полупроводниковых лампочек», действующих на основе «эффекта Лосева», переместился в Америку, где его возглавил К. Леховец (США). В исследовании проблем, связанных со светодиодами, принял самое деятельное участие и «отец транзисторов» физик В. Шокли.

Вскоре выяснилось, что германий (Ge) и кремний (Si), на основе которых делаются полупроводниковые триоды (транзисторы), бесперспективны для светодиодов из-за слишком большой «работы выхода» и, соответственно, слабого испускания фотонов на р-п-переходе. Успех же сопутствовал монокристаллам из сложных композитных полупроводников: соединений галлия (Ga), арсеникума (мышьяка — As), фосфора (Р), индия (In), алюминия (Al), других элементов периодической системы Менделеева.

Однако реализованы на практике эти идеи были лишь в 60-70-е годы, после обнаружения эффективной люминесценции полупроводниковых соединений типа (GaP) и арсенида (GaAs) галлия и их твердых растворов. В итоге на их основе были созданы светодиоды и таким образом заложен фундамент новой отрасли техники — оптоэлектроники.

Первые имеющие промышленное значение светодиоды были созданы в 60-е годы на основе структур GaAsP/GaP Ником Холоньяком (США) c красным и желто-зеленым свечением. Внешний квантовый выход был не более 0,1%. Длина волны излучения этих приборов находилась в пределах 500-600 нм — области наивысшей чувствительности человеческого глаза, — поэтому яркость их желто-зеленого излучения была достаточной для целей индикации. Световая отдача светодиодов при этом составляла приблизительно 1-2 лм/Вт.

Термины, используемые для характеристики светодиодов

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электронно-дырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для «хороших» кристаллов с мощным тепло-отводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

Светоотдача — количество излучаемых люменов на единицу потребляемой мощности люмен/ватт (лм/Вт). Этот параметр показывает, сколько энергии, поступающей на светодиод превращается в свет, а сколько в тепло. Чем выше этот параметр, тем лучше.

Световой поток — величина, характеризующая количество излучаемого (поглощаемого или отраженного) света. Световой поток представляет собой мощность излучения, оцененную с позиции его воздействия на зрительный аппарат человека. Единица светового потока — люмен (лм).

Как устроен и работает светодиод?

Прежде всего, светодиод — полупроводниковый прибор с электронно-дырочным p-n-переходом или контактом «металл — полупроводник», генерирующий (при прохождении через него электрического тока) оптическое (видимое) излучение. Напомним, что p-n-переход — это «кирпичик» полупроводниковой электронной техники, представляющий соединенные вместе два куска полупроводника с разными типами проводимости (один с избытком электронов — «n-тип», второй с избытком дырок — «p-тип»). Если к p-n-переходу приложить «прямое смещение», то есть подсоединить источник электрического тока плюсом к p-части, то через него потечет ток.

Нас интересует то, что происходит после того, как через прямо смещенный p-n-переход пошел ток, а именно момент рекомбинации (соединение) носителей электрического заряда — электронов и дырок, когда имеющие отрицательный заряд электроны «находят пристанище» в положительно заряженных ионах кристаллической решетки полупроводника. Оказывается, что такая рекомбинация может быть излучательной, при этом в момент встречи электрона и дырки выделяется энергия в виде излучения кванта света — фотона.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного р-n перехода в кристалле оказывается недостаточно и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры.

Самая распространенная конструкция светодиода — традиционный 5-миллиметровый корпус (рис. 1). Конечно, это не единственный вариант «упаковки» кристалла.

Светодиод имеет два вывода — анод и катод. На катоде расположен алюминиевый параболический рефлектор (отражатель). Внешне он выглядит, как чашеобразное углубление, на дно которого помещен светоизлучающий кристалл. Активный элемент — полупроводниковый монокристалл — в большинстве современных светодиодов используется в виде кубика (чипа) размерами 0,3x0,3x0,25 мм, содержащего р-n или гетеропереход и омические контакты. Кристалл соединен с анодом при помощи перемычки из золотой проволоки. Оптически прозрачный полимерный корпус, являющийся одновременно фокусирующей линзой вместе с рефлектором, определяет угол излучения (диаграмму направленности) светодиода.

Что касается яркости светодиода, то для нее далеко не безразлична и оптическая прозрачность n-области (сверхтонкие пленки полупроводников вполне прозрачны). Ну а цвет (частота) излучения, имея четкую функциональную связь с энергией испускаемых фотонов, зависит от материалов полупроводниковых р-п-переходов. В частности, чистый монокристалл GaAs дает инфракрасный луч, небольшая добавка А1 и/или Р меняет цвет излучения на красный. Зеленый свет испускает GaP. Использование же р-п-перехода на основе композиции AlInGaP позволяет получать желтое или оранжевое излучение.

Работая, одиночный светодиод потребляет очень небольшую энергию: при напряжении 2-4 В и токе 10-30 мА электрическая мощность варьируется от 20 до 120 мВт. При КПД в 5-25% в виде света излучается 1-30 мВт (сила света 1-30 кд). Для сравнения — миниатюрная лампа накаливания работает при напряжении около 12 В и токе 50-100 мА.

В отличие от ламп накаливания светодиоды излучают свет в относительно узкой полосе спектра, ширина которой составляет 20-50 нм. Они занимают промежуточное положение между лазерами, свет которых монохроматичен (излучение со строго определенной длиной волны), и лампами различных типов, излучающих белый свет (смесь излучений различных спектров). Иногда такое «узкополосное» излучение называют «квазимонохроматическим». Как источники «цветного» света светодиоды давно обогнали лампы накаливания со светофильтрами. Так, световая отдача лампы накаливания с красным светофильтром составляет всего 3 лм/Вт, в то время как красные светодиоды сегодня дают 30 лм/Вт и более. Например, новейшие приборы Luxeon производства американской компании Lumileds (совместное предприятие Agilent Technologies и Philips Lighting) обеспечивают 50 лм/Вт для красной и даже 65 лм/Вт для оранжево-красной части спектра. Впрочем, и это не рекорд — для желто-оранжевых светодиодов планка 100 лм/Вт уже взята.

Получение голубых светодиодов

Долгое время развитие светодиодов сдерживалось отсутствием приборов, излучающих в синем диапазоне. Трудности по изготовлению голубых светодиодов пришлось преодолевать «всем миром». Голубые светодиоды можно получить на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы (помните таблицу Менделеева?).

У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения — то есть число излученных квантов на одну рекомбинировавшую пару. У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды. Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но возникли трудности в синтезе и легировании этих материалов (обычно их получают в виде эпитаксиальных пленок). Для выращивания пленок используют два технологических подхода: метод молекулярнолучевой эпитаксии (МВЕ — Molecular Beam Epitaxy) в условиях сверхвысокого вакуума и метод осаждения пленок из металлоорганических соединений (MOCVD — Metalorganic Chemical Vapor Deposition). Принципиально важно при этом обеспечить совпадение периодов кристаллических решеток последовательных слоев с различным химическим составом, чтобы границы между соседними слоями не содержали дефектов и были резкими. Проблему не удавалось решить до конца 80-х годов.