Смекни!
smekni.com

Органическое топливо (стр. 8 из 13)

Расход воды на горячее водоснабжение (нагреваемый теплоноситель) составляет: Gг. в. = 0,530 кг/с; расход воды через змеевик (греющий теплоноситель) принимаем равным G’г. в. =0,720 кг/с (G’г. в. равно расходу воды на отопление).

Объем V бойлера-аккумулятора принимаем исходя из следующего условия: запаса горячей воды в нем должно хватить на бесперебойное снабжение потребителей в течение 8 часов.Т.о.

V = Gг. в. · 8 · 3,6 = 0,53 · 8 · 3,6 » 15 м3. (4.1)


Отсюда следует: диаметр бака - D = 1,5м; высота бака - L = 2 м.

Температуры греющего теплоносителя: на входе - t11 = 95 °С, на выходе - t12 = 60 °С.

Температуры нагреваемого теплоносителя: на входе - t21 = 20 °С (принимаем из условия, что 1/3 горячей воды возвращается с температурой 50˚С, а 2/3 добавляем из водопровода с температурой 5˚С), на выходе - t22 = 55 °С.

Определим скорости движения теплоносителей в змеевике W1 и в баке-аккумуляторе W2:

(4.2)

(4.3)

(4.4) (4.5)

Для расчета коэффициента теплоотдачи α необходимо знать среднюю температуру воды в змеевике t1СР и в баке-аккумуляторе t2СР:

Для того, чтобы определить режим течения жидкости по змеевику и в баке, найдем числа Рейнольдса, Re1 и Re2 соответственно:

(4.6) (4.7)

Где: ν1 = 0,00000038 м2/с - кинематическая вязкость воды при температуре t1CР;

ν2 = 0,00000049 м2/с - кинематическая вязкость воды при температуре t2CР;

Так как Re1 > 10000 - режим течения воды в змеевике - турбулентный. Коэффициент теплоотдачи от внешней поверхности греющих труб к омывающей их воде α1 в бойлере рассчитывается с использованием уравнения подобия:

(4.8) (4.9)

Где: Pr1=2,55 и Pr1СТ=2,64 - критерии Прандтля при температуре воды t1СР=69,21°С и tСТ = t1СР - 2 = 67,21°С соответственно;

λ1 = 0,686 Вт/м·К - коэффициент теплопроводности воды при t1СР.

Так как скорость течения воды в баке очень мала, можно предположить, что теплообмен между горячим змеевиком и омывающей его водой происходит благодаря свободной конвекции. Она представляет собой обычно подъемное течение, обусловленное подъемной силой, действующей на нагретые на поверхности слои жидкости. Соответственно на холодной стенке устанавливается опускное течение. В качестве безразмерного критерия подобия для свободной конвекции используется число Гразгофа, Gr2

(4.10)

где: L - высота бака-аккумулятора;

g - ускорение свободного падения;

Θ0 - температура наружной поверхности трубы;

V - температура жидкости вне узкой области свободноконвективного движения;

ν - кинематическая вязкость жидкости.

Таким образом, для нашего случая:

(4.11)

Теплоотдачу при свободной конвекции от нагретого змеевика к жидкости можно рассчитать по уравнению:

(4.12) (4.13)

Во всех аппаратах периодического действия происходит нестационарный теплообмен. Уравнение теплопередачи при нестационарном режиме работы имеет вид:

Q = k · F · D t · τ, (4.14)

где: τ - время работы аппарата;

Dt - средний температурный напор за время τ.

Уравнение теплопередачи и теплового баланса для всей поверхности теплообмена F за интервал времени dτ имеет вид:

dQ = kF Dt dτ = G1c (t11 - t1) dτ = G2c dt2, (4.15)


где: Dt - средняя разность температур между теплоносителями в момент времени τ;

t1 - текущее значение температуры греющего теплоносителя;

dt2 - изменение температуры нагреваемой воды за время dτ.

Температурный напор Dt в момент времени τ рассчитывается как среднелогарифмическая разность температур:

(4.16)

Так как температуры t1 и t2 со временем изменяются, то Dt является функцией времени. Подставляя Dt в (15), получаем:

(4.17)

откуда:

(4.18) (4.19)

Таким образом, подставляя известные величины, получим:

(4.20)

откуда: kF = 1865Вт/мК. (4.21)

Коэффициент теплопередачи определим по формуле:

(4.22)

Определим площадь поверхности теплообмена F и длину змеевика l:

(4.23) (4.24)

Таким образом из расчета видно, что для обеспечения потребителей горячей водой с температурой tГВ = 55˚С, необходимая длина змеевика теплообменника составляет 37 м. Диаметр змеевика можно принять равным DЗМ = 1,2 м.

4. Экономическая часть

Сравним экономический эффект котельной при ее реконструкции с установкой теплогенераторов фирмы Юсмар и при условии, что будут устанавливаться водогрейные котлы типа ТГ-120 (Гейзер-01), режимная карта которого приведена в таблице 3.

Таблица 3 - Режимная карта на водогрейный котел типа ТГ-120

Наименование параметров Тепловые нагрузки,%
40 83
Производительность, ГДж/час 0,172 0,343
Давление воды на котле, МПа 0,14 0,155
Давление воды до котла, МПа 0,17 0, 19
Низшая теплота сгорания газа, кДж/м3 33513 33513
Число газовых горелок, шт 1 1
Давление газа перед котлом, МПа 20 16
Разрежение за котлом, мм в. ст. 0,5 1,5
Температура уходящих газов, °С 95 145
Состав уходящих газов,%:СО2О2 4,413,2 4,413,2
Расход газа на котел, м3/час 5,7 11,8
Коэффициент избытка воздуха 2,51 2,51
Потери тепла,%:с уходящими газамив окружающую среду 6,602,5 10,982,7
КПД 90,90 86,32
Удельный расход топлива, м3/ГДж 139,0 143,9
Удельный расход условного топлива, кг/ГДж 159,0 164,5

Определение себестоимости вырабатываемого тепла находится по выражению:

(5.1)

где ΣЭ - годовые эксплуатационные затраты в руб.;

Qгод - годовой отпуск тепла в ГДж.

Годовой отпуск тепла подсчитывают по формуле:

(5.2)

где Q = 0,66ГДж/час - производительность котельной в час;

m = 220 - количество дней отопительного периода;

tв = +18˚С - внутренняя температура в помещении;

tср = - 2,6˚С - наружная средняя температура отопительного периода;

tно = - 27˚С - наружная температура для проектирования системы теплоснабжения;

Годовые эксплуатационные затраты определяют по уравнению:

ΣЭ=Этоп+Ээл. эн. +Эвод+Эзар+Эамор+Этек. рем. +Эобщ. расх., руб/год (5.3)

где: Этоп - затраты на топливо;

Ээл эн - затраты на электроэнергию;

Эвод - затраты на используемую воду;

Эзар - затраты на заработную плату;

Эамор - амортизационные отчисления;

Этек. рем - затраты на текущий ремонт;

Эобщ. расх - затраты общекотельные и прочие расходы.

Определим затраты на эксплуатацию котлов ТГ-120.

1 затраты на топливо:

Этоп = kпот · B · hгод · Стоп, руб/год (5.4)

где kпот = 1,055 - коэффициент, учитывающий складские, транспортные и прочие потери; В = 11,8 м3/ч - часовой расход топлива на один котел при максимальной нагрузке; n =2 - количество установленных котлов (без резервных); hгод - число часов использования установленной мощности котельной в год: hгод = 24 · тот +24 · тг. в. = 8760часов, где тот - количество дней отопительного периода; тг. в. - количество дней летнего периода;

Стоп = 49коп/м3 - стоимость газа;

Этоп = 1,055 · (11,8 · 2 · 220 + 11,8 · 145) · 24 · 0,49 = 85644 руб/год, (5.5)


2 затраты на потребляемую электроэнергию:

Ээл. эн = N · hгод · Сэл. эн. руб/год, (5.6)

где N - установленная мощность электродвигателей в кВт:

Nот = 5,5кВт - мощность электродвигателя насоса системы отопления,

Nг. в. = 4,5кВт - мощность электродвигателя насоса системы горячего водоснабжения;

hгод - число часов использования установленной мощности котельной в год:

hот = 220 часов,

hг. в. = 365 часов;

Сэл. эн =0,72 руб/кВт·ч - стоимость электроэнергии за 1 кВт · ч потребляемой мощности;

Ээл. эн. = 24· (220· (5,5+4,5) +145·4,5) ·0,72 = 49291 руб/год. (5.7)

3 затраты на используемую воду:

Эвод = Dмакс · hгод · Свод, (5.8)

где Gмакс = 2/3 · Gг. в. ·= 2/3 · 3,34 = 2,23 м3/час - максимальный часовой расход добавочной воды;

Свод = 7,61 руб/м3 - стоимость 1м3 добавочной воды;

Эвод = 24 · 365 · 2,23 · 7,61 = 148660 руб/год. (5.9)

4 затраты на заработную плату:

Так как котлы ТГ-120 полностью автоматизированы, в обслуживающем персонале нет необходимости. Достаточно того, чтобы система управления и сигнализации котлов была выведена на диспетчерский пульт МУП "Теплоэнерго".

Эзар = 0 руб/год.

5 затраты на амортизационные отчисления: