Смекни!
smekni.com

Проектирование двухкомплектного реверсионного тиристорного преобразовательного (стр. 3 из 4)

При расчёте аварийных токов обычно используют относительные единицы, принимая за базу амплитуду установившегося тока трёхфазного короткого замыкания Im:

, (30)

где Kс max учитывает возможное повышение напряжения сети.

Рисунок 4. Амплитуда ударного тока и интеграл предельной нагрузки в относительных единицах при внутреннем КЗ тиристорного преобразователя по трёхфазной мостовой схеме


По зависимости относительного значения амплитуды ударного тока I*уд при внутреннем коротком замыкании от параметров трансформатора (рис.4) определим I*уд=0,9 (при

).

Тогда амплитуда тока короткого замыкания:

, (31)

.

Тепловое воздействие на вентили преобразователя характеризуется интегралом предельной нагрузки

.

По зависимости относительного значения интеграла предельной нагрузки от параметров трансформатора (рис. 4) определим W*= 0,41.10-4 (при

).

Интеграл предельной нагрузки:

, (32)

.

Ударный неповторяющийся ток тиристора в открытом состоянии (в соответствии с табл. 3) ITSM= 4 кА.

По значению ударного тока ITSM может быть определён защитный показатель

–значение интеграла от квадрата ударного прямого тока синусоидальной формы за время полупериода напряжения сети:

, (33)

Из сравнения видно, что тиристор не выдерживает ударный ток: ITSM < Iуд; WT > W. Необходима установка предохранителей.

Проведём предварительный выбор предохранителя. Номинальное линейное напряжение на вторичной стороне трансформатора U = 205 В. Действующее значение тока через тиристор:

(34)

Выбранный предохранитель типа ПП57-3137 на номинальное напряжение 220 В, номинальный ток 100 А с плавкой вставкой на 100 А [1] обеспечивает защиту тиристоров от тока короткого замыкания. Тем не менее, применим параллельное соединение двух тиристоров. При этом действующее значение тока, протекающего через тиристор при токе Iу:

(35)

Где Кв – число параллельно соединенных вентилей;

При перегрузке действующее значение тока через тиристор при параллельном соединении:

(36)

По времятоковым характеристикам видно, что плавкая вставка выдержит эту перегрузку в течение более 10 мин, что значительно больше заданного времени (tП = 2 с). Таким образом, выбранная плавкая вставка обеспечивает работу преобразователя при заданных нагрузках.

Проверим условие защиты тиристора на токи короткого замыкания. Действующее значение первой полуволны тока короткого замыкания при внутреннем коротком замыкании:

, (37)

Тогда по характеристикам для интеграла отключения и тока, ограниченного предохранителем [1] найдем при I0 = Iуд.д: Wпр = 0,9.104 А2.с; Iпр = 4 кА.

Учитывая, количество параллельно включенных вентилей nв и коэффициента неравномерности распределения токов по вентилям КВ, получим:

Максимальная амплитуда аварийного тока через «здоровый» тиристор, которая ограничивается предохранителем, не должна превышать допустимый ударный ток:

ITSM> I′пр . (38)

Максимально возможный ограниченный предохранителем интеграл тока через любой неповрежденный тиристор должен быть меньше его защитного показателя:

Wt> W′пр . (39)

Оба условия выполняются с большим запасом (4000 А > 2200 А; 87000 А2.с > 2700 А2.с), следовательно, при выходе из строя одного из тиристоров предохранитель обеспечивает защиту остальных. Применение параллельного соединения двух тиристоров обосновано, так как иначе условия (38) и (39) не были бы выполнены.

Теперь можно считать, что тиристоры и предохранители выбраны окончательно.


4. РАСЧЕТ ПАРАМЕТРОВ И ВЫБОР СГЛАЖИВАЮЩЕГО РЕАКТОРА

При расчёте индуктивности сглаживающего реактора исходят из допустимого уровня пульсаций выпрямленного тока при установившейся нагрузке и номинальном напряжении на двигателе.

Первая гармоника пульсаций имеет максимальную величину и хуже всего фильтруется, поэтому остальные гармоники не рассматриваются. Амплитуда первой гармоники пульсаций при заданном номинальном напряжении на двигателе UН определяется углом управления α, который можно определить, преобразовав уравнение внешней характеристики. Вместо rт подставим половинное значение, так как два тиристора объединены параллельно.

,(40)

Где Udomax– выпрямленное напряжение при максимальном напряжении сети;

Udo max = 2,34 . Кс max. U2H, (41)

Udomax = 2,34 . 1,1 . 118,4 = 305 В.

,

следовательно α = 40 град. эл.

Амплитудное значение первой гармоники выпрямленного напряжения:

,(42)

где m– пульсность; для трёхфазной мостовой схемы m = 6.

Необходимая индуктивность цепи выпрямленного тока Ld может быть определена по напряжению Udm(1)и заданному коэффициенту пульсаций q:

(43)

Так как Ld > Lя , то необходима установка реактора с индуктивностью:

L > Ld – Lя . (44)

Расчетная индуктивность сглаживающего реактора:

L = 12,2.10-3 – 3,9.10-3 = 8,3.10-3 Гн.

Номинальный ток реактора ILH должен быть больше тока IУ.

Выбираем реактор СРОС-200/0,5 на номинальный ток ILH = 800А с индуктивностью LL = 15 мГн и активным сопротивлением обмотки rL = 20 мОм [1].

Допустимый ток реактора в течении 10 с при перегрузке 150%:

Iп доп = 2,5 .LLH , (45)

Iп доп = 2,5 . 200 = 500 А.

Реактор выдержит перегрузку, так как ток перегрузки двигателя IП меньше по величине и по длительности (346,5 А < 500 А, 2 с < 10 c).

Общая индуктивность в цепи выпрямленного тока:

Ld = Lя + LL , (46)

Ld = 3,9.10-3 + 15.10-3 = 18,9 мГн.

Индуктивное сопротивление:

xd = ω. Ld , (47)

xd = 314 . 18,9.10-3 = 5,9 Ом.

Напряжение на двигателе при минимальном напряжении сети и токе IУ:

,(48)

Напряжение U > UH (232,6 В > 220 В), следовательно, выпрямитель обеспечивает заданный режим.


5. РАСЧЁТ И ПОСТРОЕНИЕ ВНЕШНИХ, РЕГУЛИРОВОЧНЫХ И ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПРЕОБРАЗОВАТЕЛЯ

На основе математического описания [1] разработана программа расчёта внешних, регулировочных, энергетических и ограничительных характеристик преобразователя, с помощью которой построены характеристики на ЭЦВМ. Также строятся внешняя и ограничительная характеристики, рассчитанные приближенным методом при пренебрежении активными сопротивлениями. Для напряжения UЗ, равного 220 В, расчетом с помощью ЭЦВМ определен угол α = 40 град. эл. Для этого угла произведен расчёт.

Напряжение на холостом ходу в прерывистом режиме:

(49)

Где

;