Смекни!
smekni.com

Проектирование масляного выключателя (стр. 1 из 4)

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию ЮУрГУ

Кафедра” Прикладная механика, динамика и прочность машин”

Проектирование масляного выключателя

Челябинск 2007 год

Содержание

1. Задание на курсовое проектирование

2. Описание работы масляного выключателя

2.1 Фаза отключения

2.2 Фаза включения

3. Определение геометрических параметров привода

3.1 Проектирование шарнирного четырёхзвенника

3.2 Проектирование кинематической схемы выключателя с приводом

4. Кинематический анализ механизма

5. Динамический анализ механизма

5.1 Приведение масс механизма в фазе отключения

5.2 Определение параметров отключающей и буферной пружин

5.3 Построение фазовой траектории контактных стержней в фазе отключения

5.4 Определение времени отключения

5.5 Приведение масс механизма в фазе включения

5.6 Приведение сил статического сопротивления к штоку двигателя

5.7. Выбор силовой характеристики двигателя

5.8 Построение фазовой траектории контактных стержней в фазе включения

5.9 Определение времени включения

6. Силовой расчет механизма привода

7. Расчет деталей механизма на прочность

7.1 Расчет осей шарниров

7.2 Расчет рычага четырехзвенника

Заключение

Список литературы

Задание на курсовой проект

Спроектировать привод к масляному выключателю типа ВМГ-10, взяв за основу привод типа ПЭ-11. Определить время включения и время отключения выключателя со спроектированным приводом.

Исходные данные к проекту сведены в таблицу 1.1.

Таблица 1.1. Исходные данные

Цифра варианта 1 Цифра варианта 5 Цифра варианта 9
Ψ0 р Vp, м/с Vmax/Vp H, мм hk, мм Gk, Н
43 1.45 3.4 1.7 280 56 52

где

р – отношение длин шатуна АВ и кривошипа О1А;

Vp – скорость контактных стержней в момент размыкания;

Vmax – максимально допустимая скорость контактных стержней;

Н – полный ход контактных стержней;

hk – ход в контактах контактных стержней;

Gk – вес одного контактного стержня.


2.Описание работы механизма

Схема выключателя ВМГ-10 и привода типа ПЭ-11:

Рисунок 2.1. Схема выключателя ВМГ-10 (позиции 1-6) с приводом типа ПЭ-11 (позиции 7-11): 1 – розеточный контакт (3 шт.); 2 – контактный стержень (3 шт.); 3 – коромысло выключателя (3 шт.); 4 – отключающая пружина; 5 – буферная пружина; 6 – демпфер; 7 – тяга; 8 – коромысло четырехзвенника; 9 – шатун; 10 – кривошип; 11 – щека запорного механизма; 12 – пружина запорного механизма; 13 – фиксатор; 14 – пружина фиксатора; 15 – опорная скоба; 16 – пружина опорной скобы; 17 – шток двигателя.

2.1 Фаза отключения

В положении «включено» (рис. 2.1) буферная пружина 5 сжата, а отключающая 4 – растянута. Они стремятся повернуть коромысло по часовой стрелке. Тяга 7 растянута, а шатун 9 и кривошип 10 сжаты. Щека 11 опирается на фиксатор 13.

При повороте фиксатора 13 против часовой стрелки вокруг оси О5 (вручную или с помощью электромагнита, который на схеме не показан) щека 11 освобождается и под действием силы со стороны кривошипа 10 поворачивается вокруг оси О4, сжимая пружину 12. При этом шарнир А перемещается влево по торцу опорной скобы до тех пор, пока не срывается с него и падает вниз. Коромысло 8 и коромысло 3 поворачиваются по часовой стрелке, поднимая подвижные контакты 2. После размыкания контактов пружина 5 садится на свои упоры, а механизм движется под действием пружины 4. В конце поворота коромысла 3 включается в работу демпфер 6, который останавливает разогнавшийся механизм, поглощая его кинетическую энергию.

После срыва шарнира А с торца скобы щека 11 под действием пружины 12 возвращается в исходное положение. Фиксатор 13 под действием пружины 14 поворачивается по часовой стрелке и фиксирует щеку в исходном положении. Выключатель находиться в положении «отключено» и готов к включению.

2.2 Фаза включения

Включение производится перемещением вверх штока 17 (рис.2.1), приводимого в движение электромагнитным, пневматическим или гидравлическим двигателем. Поднимая вверх шарнир А, шток поворачивает кривошип 10 четырехзвенника О1АВО2 вокруг временно неподвижной оси О1. При этом коромысло 8 и коромысло 3 поворачиваются против часовой стрелки, опуская стержни 2 до полного входа их в розеточные контакты 1. Правое плечо коромысло 3 натягивает отключающую пружину 4 и сжимает буферную пружину 5.

Перемещаясь вверх, шарнир А отжимает вправо опорную скобу 15 под действием пружины 16 возвращается назад, запирая механизм в положении «включено». Шток 17 опускается вниз. Механизм готов к отключению.

Рассмотрев работу механизма, видим, что привод выключателя необходим только в фазе включения и его назначение состоит в преодолении сил отключающей и буферной пружин, сил трения и сил инерции. Поэтому рассчитать и спроектировать привод можно, не рассматривая фазу отключения, в которой движение всего механизма осуществляется за счет потенциальной энергии отключающей и буферной пружин.

3. Определение геометрических параметров привода

Целью данного раздела является определение геометрических параметров привода. При проектировании передаточных механизмов учитывают два основных фактора:

1. Проворачиваемость звеньев, т. е. возможность непрерывного перехода ведущего звена (кривошипа) из начального положения в конечное.

2. Углы давления, т. е. углы между направлением действия силы и вектором скорости соответствующей ведомой кинематической пары, за весь цикл работы механизма не должны превышать допускаемых значений. При увеличении этих углов в механизме возрастают нагрузки, увеличиваются потери энергии на трение (т. е. снижается КПД).

Механизм привода осуществляет преобразование прямолинейного движения штока двигателя во вращающее движение коромысла выключателя при включении, а также обеспечивает согласование силовых характеристик двигателя и потребления энергии. Для построения симметричного четырёхзвенника (рис. 3.1) рассчитаем необходимые параметры, зададим значения углов:

При выборе углов ψ0,φ0 учитывается: что при увеличении этих углов возрастают силы сопротивления движению в начале и конце фазы включения, а при уменьшении этих углов растут габариты передачи.

Окончательное значение линейных размеров четырёхзвенника может быть установлено лишь после силового расчёта, когда из условий прочности будут найдены диаметры шарниров в точках А, В, О2 и оценка возможности конструктивного выполнения механизма в пределах найденных габаритов.

3.1 Проектирование шарнирного четырёхзвенника

Полный ход штока: hш=H/3 (3.1)

hш=280/3=93.33 (мм);

радиус кривошипа О1А: RA=hш/2*sin(φ0) (3.2)

Ra=93.33/2*sin(30)=93.33 (мм);

радиус кривошипа O2B: RB=RA*cos(φ0) (3.3)

RB=93.33*cos(30)=68,43 (мм);

длины апофем: аа=Ra*cos(φ0) (3.4)

aB=RB*cos(ψ0) (3.5)

aa=93.33*cos(30)=80.83 (мм);

aB=68.43*cos(43)=50 (мм);

длинашатуна: Lш=p*Ra (3.6)

Lш=1.45*93.33=135.28 (мм);

длина О1О2:

(3.7)

где Lш –длина шатуна АВ;

аа, аВ- длины апофем;

l0=

(мм);

Полученные размеры четырёхзвенника округляем по ГОСТу 66636-69 и строят в масштабе µL(рис 3.1).

Округлив по ГОСТу 66636 - 69 получим:

Ra=95 (мм), RB=67 (мм), Lш=140 (мм).

Масштаб µLопределяется из соотношения:

Ra=µL*О1А (3.8)

где О1А- длина, выбирается произвольно тогда получим

µL=Ra/O1A (3.9)

µL=95/47.5=0.002 (м/мм);

Длины звеньев АВ, О2В, О1О2, для построения четырёхзвенника определяются из выражении:

AB=Lш/µL (3.10)

AB=140/0.002=70 (мм);

О2В=RB/µL(3.11)

O2B=67/0.002=33.5 (мм).

3.2 Проектирование кинематической схемы выключателя с приводом

Для построения кинематической схемы всего механизма масляного выключателя, четырёхзвенник О1А1В1О2следует повернуть на (90+γ) градусов против часовой стрелки (рис 3.2), где

γ=arctg(r/Lш) (3.12)

где r- параметр, r=aa-aB=80-50=30 (мм),

γ=arctg(30/140)=12.5°.

Коромысло ВO2С будем проектировать т.о., чтобы в крайних положениях прямая O2С образовывала с горизонталью одинаковые углы ψ0=0.5*(ψ2-ψ1). Тогда зависимость между длиной второго плеча коромысла Rc и отношением длин плеч коромысла выключателя EO3M:

(3.13)

(мм);

где: l1- длина DО3, мм;

L – длина ЕО3 мм;

Rc- плечо коромысла, Rc=RB=67 (мм);

Длина тяги CD практически не влияет на кинематику системы, поэтому зададим её такой, чтобы схему механизма удобно было располагать на чертеже. При определении параметров отключающей и буферной пружин считалось, что скорость контактов стержня практически совпадает с вертикальной проекцией скорости шарнира Е. Это условие выполняется достаточно точно во всех точках траектории движения шарнира при малом угле полного поворота коромысла 2θ0. Однако очень малый угол приводит к значительному увеличению размера L и соответственно габаритов выключателя. Исходя из этих соображений, зададим 2θ0=45°, тогда можем найти L:

(3.14)

L=0.5*280/sin(22.5°)=360 (мм).

Длину рычага l2 определяют из соотношения

=L/l2, где

α- коэффициент относительной длины рычага коромысла;

α=0.4;

l2=0.4*360=150 (мм).

4. Кинематический анализ механизма

Основной задачей кинематики механизма является изучение движения его звеньев; при этом действующие на звенья силы не учитываются.