Смекни!
smekni.com

Радиоактивность и момент силы. Понятие ноосферы (стр. 3 из 7)

Вопрос о соотношении случайности и закономерности в эволюции рассматривался многими биологами и философами. Вопрос имеет множество аспектов, в том числе и самый общий – мировоззренческий.

Суть дилеммы, если говорить упрощенно, состоит в том, что эволюция в целом производит впечатление весьма закономерного процесса, однако, согласно господствующим представлениям ("синтетической теории эволюции") в основе его лежат случайные факторы (прежде всего - случайные мутации). Как же из набора случайностей рождается нечто закономерное? Это противоречие особенно подробно рассматривается в работах Л.С.Берга, А.А.Любищева и С.В.Мейена. Л.С.Берг противопоставлял "эволюции на основе случайностей" - тихогенезу - "эволюцию на основе закономерностей" - номогенез. С.В.Мейен мечтал о создании "номотетической" теории эволюции в противовес "синтетической". Эти идеи продолжают развиваться российскими палеонтологами.

Для системы из одних только квантовых объектов вообще нельзя было бы построить никакой логически замкнутой механики. Возможность количественного описания движения электрона требует наличия также и физических объектов, которые с достаточной точностью подчиняются классической механике. Если электрон приходит во взаимодействие с «классическим объектом», то состояние последнего, вообще говоря, меняется. Характер и величина этого изменения зависят от состояния электрона и поэтому могут служить его количественной характеристикой.

В этой связи «классический объект» обычно называют «прибором», а о его процессе взаимодействия с электроном говорят, как об «измерении». Необходимо, однако, подчеркнуть, что при этом отнюдь не имеется в виду процесс «измерения», в котором участвует физик-наблюдатель. Под измерением в квантовой механике подразумевается всякий процесс взаимодействия между классическим и квантовым объектами, происходящий помимо и независимо от какого-либо наблюдателя. Выяснение глубокой роли понятия измерения в квантовой механике принадлежит Бору.

Мы определили прибор как физический объект, с достаточной точностью подчиняющийся классической механике. Таковым является, например, тело достаточно большой массы. Однако не следует думать, что макроскопичность является обязательным свойством прибора. В известных условиях роль прибора может играть также и заведомо микроскопический объект, поскольку речь идет о величинах, характеризующих движение электрона, а не о величинах, характеризующих электрон как частицу (заряд, масса) и являющихся параметрами.

6. Что такое «начала термодинамики», идеальный и реальный цикл, коэффициент полезного действия тепловых машин? В чем состоит суть начал термодинамики и спора о «тепловой смерти Вселенной»?

Начала термодинамики — совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Цикл Брайтона, это термодинамический цикл, состоящий из следующих процессов:

«Идеальный» цикл Брайтона:

1. Изоэнтропическое сжатие. (Процес 1-2 на диаграмах).

2. Изобарический подвод теплоты. (Процесс 2-3 на диаграмах).

3. Изоэнтропическое расширение. (Процесс 3-4 на диаграмах).

4. Изобарический отвод теплоты. (Процесс 4-1 на диаграммах)

«Реальный» цикл Брайтона:

1. Адиабатическое сжатие. (Процес 1-2 на P-V диаграме и 1-2р на I-S (T-S) диаграмме).

2. Изобарический подвод теплоты. (Процесс 2-3 на P-V диаграме и 2р-3 на I-S (T-S) диаграмме).

3. Адиабатическое расширение. (Процесс 3-4 на P-V диаграме и 3-4р на I-S (T-S) диаграмме).

4. Изобарический отвод теплоты. (Процесс 4-1 на P-V диаграме и 4р-1 на I-S (T-S) диаграмме).

Цикл Брайтона, положен в основу создания воздушно-реактивных двигателей (ВРД) и газотурбинных двигателей (ГТД). Данные двигатели хоть и менее приёмистые и экономные по сравнению с двигателями внутреннего сгорания, работающими на циклах Отто или Дизеля, но их главным преимуществом является отношение мощности или реактивной тяги двигателя к его массе и габаритам. То есть тяговооруженность двигателя.

P — V диаграмма цикла Брайтона

I — S (T — S) диаграмма цикла Брайтона

Коэффициент полезного действия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wпол/Wcyм.

В электрических двигателях КПД — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника.

В тепловых двигателях — отношение полезной механической работы к затрачиваемому количеству теплоты.

В электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

Для вычисления КПД разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты и других аналогичных соотношений. В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.

Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД тепловых электростанций достигает 35-40%, с утилизацией тепла - 60-70%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением — 40-50%, динамомашин и генераторов большой мощности — 95%, трансформаторов — 98%. КПД процесса фотосинтеза составляет обычно 6-8%, у хлореллы он достигает 20-25%. У тепловых двигателей в силу второго начала термодинамики КПД имеется верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим КПД обладает цикл Карно.

Различают КПД отдельного элемента (ступени) машины или устройства и КПД, характеризующий всю цепь преобразований энергии в системе. КПД первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и другие виды КПД. Общий КПД системы равен произведению частных КПД, или КПД ступеней.

В технической литературе КПД иногда определяют таким образом, что он может оказаться больше единицы. Подобная ситуация возникает, если определять КПД отношением Wпол/Wзатр, где Wпол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты. Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный КПД установки всегда меньше единицы, рассмотренный КПД h=Wпол/Wзатр может оказаться больше единицы. Например, тепловой КПД кондиционеров в среднем равен 300%.

«Тепловая смерть Вселенной» – гипотетическое состояние мира, к которому якобы должно привести его развитие в результате превращения всех видов энергии в тепловую и равномерного распределения последней в пространстве; в таком случае Вселенная должна прийти в состояние однородного изотермического равновесия, характеризуемого максимальной энтропией. Допущение тепловой смерти Вселенной формулируется на основе абсолютизации второго начала термодинамики, согласно которому энтропия замкнутой системы может только возрастать.

7. Дайте представление о научной методологии и формировании критерия истины в разное время. Какие методы используют в естествознании и насколько они дают объективные результаты?

Методология науки, в традиционном понимании, — это учение о методах и процедурах научной деятельности, а также раздел общей теории познания, в особенности теории научного познания (эпистемологии) и философии науки.

Методология, в прикладном смысле, — это система (комплекс, взаимосвязанная совокупность) принципов и подходов исследовательской деятельности, на которые опирается исследователь (ученый) в ходе получения и разработки знаний в рамках конкретной дисциплины: физике, химии, биологии и других разделах науки.

Наиболее существенный вклад в разработку методологии науки внесли Платон, Аристотель, Ф.Бэкон, Р.Декарт, Кант, Г.Гегель и другие классики философии. В то же время в работах этих авторов методология науки представала в обобщенном и слабо различенном виде, совпадая с исследованием общей идеи научности и ее базовых принципов. В частности, Аристотель и Ф.Бэкон классифицируют научное знание и предлагают два основных метода получения достоверной информации о природе и человеке: логико-дедуктивный и экспериментально-индуктивный. И.Кант разрабатывает общие границы познавательных способностей, а Ф.Шеллинг и Г.Гегль пытаются создать универсальную систему научного знания. Данные исследования имели более отвлеченный характер, в силу того, что наука не играла вплоть до сер. XVIII — н. XIX какой-либо существенной практической роли в социальной жизни.