Смекни!
smekni.com

Расчет принципиальной тепловой схемы паротурбинной установки типа Т-100-130 (стр. 8 из 9)

.

4) Коэффициент полезного действия ТЭЦ по производству и отпуску теплоты на отопление:

,

.

Так как ПВК при tН=-50С не работает, то принимаем, что

5) Удельный расход условного топлива на производство электроэнергии:


,

.

6) Удельный расход условного топлива на производство и отпуск тепловой энергии:

,

.

7)Расход теплоты топлива на станцию :

, QПВК=0, при tН= –50С,

.

8) Полный коэффициент полезного действия энергоблока (брутто):

,

.

9) Удельный расход теплоты на энергоблок ТЭЦ:

,

.

10) Коэффициент полезного действия энергоблока (нетто):

,

где

– удельный расход электроэнергии на собственные нужды, принимаем
.

11) Удельный расход условного топлива "нетто":

,

.

Расход условного топлива:

Расход условного топлива на выработку теплоты, отпущенной внешним потребителям:

.

Расход условного топлива на выработку электроэнергии:

ВЭУ=ВУ-ВТУ=9.52 - 5,0553=4,465

.

В результате расчёта тепловой схемы электростанции на базе теплофикационной турбины Т-100-130, работающей на расчетном режиме при температуре окружающей среды

получены следующие значения основных параметров, характеризующие данную электростанцию:

- расходы пара в отборах турбины:

,

,

,

,

,

,

.

- расходы греющего пара на сетевые подогреватели:

,

;

- отпуск тепла на отопление турбоустановкой:

QТ = 148,272 МВт;

- общий расход теплоты на внешних потребителей:

QТП = 148,272 МВт;

- мощность на клеммах генератора:

Nэ=82,58 МВт;

- КПД ТЭЦ по производству электроэнергии:

;

- КПД ТЭЦ по производству и отпуску теплоты на отопление:

;

- удельный расход топлива на производство электроэнергии:

bЭУ=168,49

;

- удельный расход топлива на производство и отпуск тепловой энергии:

bТУ=37,71

;

- полный КПД ТЭЦ «брутто»:

;

- полный КПД ТЭЦ «нетто»:

;

-удельный расход условного топлива на станцию "нетто":

.

Полученные в результате расчета тепловой схемы энергоблока при номинальном режиме (при температуре наружного воздухаtнар = -50С)расходы пара, воды,конденсата и топлива используются при выборе типового оборудования и трубопроводов энергоблока и электростанции в целом.

Для установления оптимального режима работы оборудования и трубопроводов энергоблока и электростанции в целом при различных температурах наружного воздуха, необходимо произвести расчет тепловой схемы энергоблока на различных режимах работы турбоагрегата: на режимах повышенной (tнар> -50С) и пониженной (tнар < -50С) нагрузках.


4. Описание конструкции и работы конденсатора КГ-6200-2

Турбина Т-100-130 с двухпоточным цилиндром низкого давления имеет два конденсатора с поверхностью охлаждения по 2649 м2. Нижнюю часть каждого конденсатора занимает теплофикационный пучок с поверхностью нагрева 461 м2 .

Общее число трубок выполненных из латуни размером 24´1 мм 9580. Общая площадь нагрева обоих конденсаторов 6220 м2. Конденсатор имеет два хода воды.

Конденсатор расположен поперёк оси турбины, приварен к выходному патрубку и дополнительно опирается на пружинные опоры для уменьшения возможной вибрации(см. рисунок В.1 и рисунок В.2). Основные трубные пучки размещены симметрично относительно оси турбины; компоновка трубок в пучке ленточная с треугольной разбивкой.

Охлаждающие трубки развальцованы в трубных досках с двух сторон и образуют три обособленных пучка, расположенныхв паровом потоке. Сильно разбитая поверхность входа пара на пучки трубок обеспечивает невысокие скорости при проходе пара. Верхняя и нижняя части трубных пучков определены друг от друга щитами, служащими для сбора и отвода конденсата из верхних частей пучков и закрывающими проходы для пара к месту отброса паровоздушной смеси. Отсос неконденсирующихся газов производится с боков паровой части корпуса, куда они поступают через выделенный из общей массы труб воздухоохладитель.

Конденсатор выполнен двухходовым, двухпоточным по водяной стороне разделен на две отдельные половины, имеющие свои входные и поворотные водяные камеры. Встроенный трубный пучок расположен на оси конденсатора, имеет свои водяные камеры и индивидуальный отсос воздуха. Разбивка трубного пучка также треугольная. Основные трубные доски конденсатора общие как для основного трубного пучка, так и для встроенного.Таким образом, возможно отключение одной половины конденсатора для чистки охлаждающих трубок на ходу. Конструкция водяных камер позволяет также чистить трубкиконденсатора резиновыми шариками. Осуществление двух ходов воды по трубкам достигается устройством во входных камерах перегородок. Водяные камеры, входныеи поворотные, снабжены съемными крышками, позволяющими иметь доступ к трубкам. Для осмотра и проведения мелких работ на крышках расположены лазы – по одному в каждом ходе.

Внутри парового пространства располагается шесть трубных перегородок, служащих для запирания трубок и увеличения жесткости корпуса. Средние трубные перегородки приварены к корпусу по контуру, за исключением нижней части, где имеются вырез для стока конденсата к конденсатосборнику. Крайние трубные перегородки не имеют выреза в нижней части и образуют «соленые отсеки». Таким образом, конденсат «саленных отсеков» не сообщаются с остальным конденсатом.

Для поддержания определенного уровня конденсата в конденсаторе к нижней части корпуса привариваются на монтаже конденсатосборник, в котором конденсат сливается через прорези в нижней части корпуса.

В верхней части конденсатора вварены коллектор, подающий в конденсатор химически очищенную воду для деаэрирования, а также трубопровод для сброса пара от концевых уплотнений (для зимнего периода при пропуске через конденсатор сетевой воды). На каждой половине корпуса конденсатора предусмотрены линзовые компенсаторы для уменьшения термических напряжений в трубках и предотвращения расстройства вальцовочных соединений.

Около 18% охлаждающей поверхности конденсатора (461 м2) выделено для подогрева подпиточной или сетевой воды. Выделенная поверхность (встроенный пучок) имеют свои водяные камеры – входную и поворотную. Камеры снабжены съемными крышками, позволяющими иметь доступ к охлаждающим трубкам встроенного пучка. Для уменьшения термических напряжений в трубках и предотвращения расстройства вальцовых соединений встроенный пучок снабжен своим компенсатором. Отсос паровоздушной смеси из пучка осуществляется через трубу, расположенную внутри встроенного пучка. Труба для отсоса паровоздушной смеси в паровом корпусе имеет прорези, проходит через трубную доску и водяную камеру пучка и уплотняется с помощью сальника в крышке водяной камеры.