Смекни!
smekni.com

Реактивні двигуни (стр. 5 из 7)

Підгальмовування частинок на поверхні тіла приводити дойого нагрівання, причому у більшому ступені, чим більше була швидкість часток. Якщо позначити через t температуру потоку, а через v - швидкість потоку в м/сек, те температура загальмованого потоку (прикордонного шару) буде дорівнювати

t*= t + (v2/2000)

Звідси видно, що температура t*дуже швидко зростає зізбільшенням швидкості потоку. Так, наприклад, якщо в прикордонному шарі потоку, що тече зі звуковою швидкістю, температура зростає на 550, то при десятикратній швидкість звуку це збільшення температури складі 55000. Правда, через теплове випромінювання від гарячого тіла у відносно холодне навколишнє середовище температура тіла буде істотно менше, проте проблема так званого аеродинамічного нагрівання літального апарату є однією із самих гострих проблем польоту з великими надзвуковими швидкостями.

Забігаючи трохи вперед, зазначимо, що оскільки найбільше нагрівання відбувається в передній частині тіла, що летить, то ракети часто забезпечують наконечником з термостійкого матеріалу. На щастя для космічних ракет, при зльоті смороді залишають самі щільні шари атмосфери з малими швидкостями, що охороняє їх від згоряння; однак при поверненні ракети влітають в атмосферу з величезними швидкостями і згоряють, на зразок комет і метеоритів, що здаються нам «падаючими зірками».

Опір тиску визначається тим, що при русі тіла в середовищі тиск на його поверхні неоднаково, наприклад, на передній частині тіла воно завжди більше, ніж на кормовій частині, де спостерігається навіть розрідження (так називаний донний ефект). Рівнодіюча всіх сил тиску, що впливають на поверхню тіла, виявляється спрямованої проти рухові, тому на її подолання також приходитися затрачати частина тяги двигуна. Чим більш зручно обтікаючу форму має літальний апарат, тим менше опір тиску.

При надзвуковому польоті додатково виникає так називаний хвильовий опір. Суть його полягає в наступному. Тіло, що рухається в середовищі, стискає це середовище в області, що безпосередньо прилягає до поверхні тіла. При польоті з дозвуковими швидкостями такого стиску не відбувається, тому що частки встигають «розбігтися» (слабкі збурення в середовищі поширюються зі швидкістю звуку, яка у даному випадку перевищує швидкість польоту). При надзвуковій швидкості польоту частки не встигають «втекти» і перед крилом літака виникає вузька криволінійна область стиснутого газу, що називається ударною хвилею.

Найбільшій інтенсивності та швидкості переміщення, рівної надзвукової швидкості літака, ударна хвиля досягає в середній своїй частині напроти крайки крила, де вона являє собою так називаний прямий стрибок ущільнення; далі ударна хвиля слабшає, переходячи в так називані косі стрибки ущільнення, і, нарешті, на краях переходить в слабкі хвилі збурення, що поширюються зі швидкістю звуку. Цим визначається та обставина, що мі «чуємо» надзвуковий літак після того, як побачимо його. При польоті надзвукового літака на малій висоті інтенсивна частина ударної хвилі може дійти до Землі - тоді вона створює враження гарматного пострілу і здатна причинити серйозних руйнувань. Тому польоти надзвукових літаків на малих висотах не дозволяються.

Незважаючи на ряд мір, що застосовуються для ослаблення ударних хвиль, наприклад використання тонких стріловидних крил, на переміщення цих хвиль потрібно затрачати значну енергію. Крім того, при наявності ударних хвиль погіршується обтікання крила. Усе це разом дає хвильовий опір, для подолання якого потрібна додаткова тяга двигуна. Тому надзвукові і тім більше гіперзвукові літаки вимагають дуже потужних двигунів. При гіперзвукових швидкостях польоту гальмування потоку, що набігає, уже настільки велике, що компресор стає непотрібним.

Двигун, у якому здійснюється гальмування потоку, що набігає, спалювання палива в камері і розширення газу в соплі, називається прямоточним повітряно-реактивним двигуном. Він значно простіший газотурбінного двигуна, оскільки в ньому відсутні обертові частини (турбокомпресор). Однак великим недоліком літака зпрямоточним двигуном є відсутність автономного старту. При зльоті, коли ще немає потоку, що набігає, тяга прямоточного двигуна дорівнює нулю, тому такий літак повинний бути обов'язково оснащений спеціальним стартовим двигуном, що розганяє літак до такої швидкості, при якій робота прямоточного двигуна стає вже ефективною.

Великі витрати палива в сучасних потужних авіаційних двигунах змушують брати на борт надзвукового важкого літака десятки і навіть сотні тонн палива.

Шлях подальшого збільшення дальності полоту без збільшення запасу палива полягає в тому, щоб застосовувати нові палива з великою хімічною енергією, чи, як кажуть, з великою теплотворною здатністю.

У даний час вважаються перспективними висококалорійні хімічні палива на основі бороводневих з'єднань (боранів). Найбільш розповсюдженим видом такого палива є пентаборан, що представляє собою летку токсичну рідина з теплотворною здатністю порядку 16000 ккал/кг, тобто перевищує теплотворну здатність гасу більш ніж у півтора рази. Це дозволяє збільшити дальність польоту літака на 30-40%. Однак при застосуванні боранів зустрічаються великі труднощі, які полягають в тому, що в продуктах його згоряння є окис бору, що в гарячому виді являє собою густу грузлу рідину, що забруднює і роз'їдає проточну частину двигуна, зокрема турбінні лопатки. Тому в першу чергу застосування боранів варто очікувати в прямоточних двигунах і у форсажних камерах газотурбінних двигунів.

Крім цього недоліку, борани токсичні, дорогі і виробляються поки в малих кількостях. Тому вчені та конструктори шукають нові джерела енергії на літаку.

Необмеженого збільшення дальності польоту можна досягти, використовуючи атомну (внутрішньоядерну) енергію шляхом заміни камери згоряння атомним реактором. Атомний реактор працює в такий спосіб. У кожнім реакторі звичайно мається деяка кількість вільних, чи так званих блукаючих, нейтронів (нейтрон - позбавлена електричного заряду елементарна частка матерії, що входити до складу атомних ядер). Вільний нейтрон, завдяки відсутності електричного заряду, легко проникає в атомне ядро урану, з якого складається тепловиділяючий елемент реактора, і руйнує його з утворенням осколків ядра і декількох, так званих вторинних, нейтронів. Осколки, що розлітаються з великими швидкостями, зіштовхуються з навколишніми ядрами, збільшують швидкість їхнього хаотичного теплового рухові і розігрівають середовище, у якій відбувається процес розподілу ядер. Утворене тепло приділяється стисненим повітрям, що проходить через реактор.

Але як же підтримувати реакцію розщеплення, що почалася в матеріалі, що поділяється? Цю місію виконують вторинні нейтрони. Проникаючи з великою швидкістю в шари сповільнювача (у якості якого можуть служити різні легкі речовини, наприклад важка вода, графіт, берилій, захоплення якими нейтронів мало ймовірний), швидкі нейтрони втрачають у ньому свою кінетичну енергію і виходять звідти у виді повільних нейтронів. Потім вони попадають у сусідні уранові блоки, де знову захоплюються атомами урану, викликаючи їхній розподіл, і т.д. Якщо число вторинних нейтронів, що утворяться при розпаді, дорівнює числу нейтронів, загублених і захоплених ядрами матеріалу, що розщеплюється, то процес розподілу буде підтримуватися автоматично. Такий стан реактора називається критичним, а маса атомного пального, при якій досягається критичний стан. - критичною масою. Режим роботи звичайного двигуна змінюється шляхом зміни подачі пального в камеру згоряння. У реакторі маса атомного пального постійна. Як викликати зміну режиму його роботи? Це досягається шляхом використання спеціальних регулюючих стрижнів, виготовлених з матеріалів, що добре поглинають нейтрони. Всуваючи чи висуваючи регулюючі стрижні, можна збільшувати чи зменшувати кількість нейтронів, що поглинаються, і в такий спосіб регулювати теплову потужність реактора (рис. 4).

Рис. 4 - Схема атомного реактора: 1 -утримуюча плита; 2 - сповільнювач; 3 - відбивач; 4 - регулюючий стрижень; 5 - зовнішній кожух; б - тепловиділяючий елемент


Здавалося б, ядерні двигуни, що вимагають незначного запасу атомного пального, можуть претендувати на швидкий і широкий розвиток. Однак цього поки не сталося через великі ускладнення, що виникають у зв'язку з необхідністю надійно захищати екіпаж літака від шкідливого впливу радіоактивного випромінювання. Необхідні захисні засоби настільки обважнюють рухову установку, що вона стає непридатної для постановки на літак.

3.1 Цикли реактивних двигунів