Смекни!
smekni.com

Резерфорд (стр. 3 из 4)

Такие теоретики, как Абрахам, Хевисайд и Сирл, здесь, в Кембридже, пытались выяснить, как кажущаяся масса, обусловленная зарядом, должна зависеть от скорости. Разные исследователи приходили к различным результатам, так как в основу клали различные начальные предположения, но при сравнительно больших скоростях результаты были примерно одинаковыми. У всех получалось, что масса должна увеличиваться со скоростью и становиться бесконечной при приближении к скорости света. Тем временем стали доступными небольшие количества радия, а поскольку он испускает электроны, движущиеся со скоростью, очень близкой к скорости света, то стало возможно провести экспериментальную проверку этих теорий.

В 1902 г. это сделал Кауфман, и полученные им результаты в пределах точности эксперимента находились в общем согласии со всеми теориями.

Эти эксперименты привлекли очень большое внимание и приводили многих к неправильному выводу, что поскольку масса электрона, видимо, полностью обусловлена его зарядом, то и вся масса не что иное, как проявление электрического заряда. Согласно этому представлению, масса атома водорода, в 1850 раз большая массы электрона, просто объяснялась тем, что этот атом содержит 1850 электронов. Однако такое положение сохранялось недолго. В 1905 г. Эйнштейн, исходя из соображений относительности, показал, что масса тела должна изменяться со скоростью и что независимо от того, заряжено или не заряжено тело, изменение массы одно и то же. Любое тело независимо от того, из чего оно состоит, должно подчиняться закону Эйнштейна, и все эксперименты, по-видимому, указывают на справедливость этого закона. Эксперименты Кауфмана согласуются как со следствиями релятивистской, так и старой электрической теорий, так что уже нельзя было больше допускать, что масса электрона полностью обусловлена его зарядом. Единственный способ определения радиуса электрона заключался в допущении, что масса электрона полностью обусловлена его зарядом, после чего использовалось приведенное выше выражение, поэтому еще раз ясно, что оценки размера электрона не существовало. Вполне вероятно, что радиус электрона порядка 10-13 см, и недавно Борн развил теорию, которая приводит к величине такого порядка, но рано судить о том, насколько эта теория верна.

Нас вполне удовлетворяло в течение 10 или 15 лет представление об электроне, как о сферическом распределении заряда, возможно, с некоторой "обычной" массой. В 1925 г., однако, для объяснения некоторых неясностей в спектрах водорода и гелия Уленбек и Гоусмидт предположили, что электрон к тому же обладает магнитным моментом, и так как они понимали, что моментом должен обладать вращающийся сферический заряд, то высказали предположение о "вращающемся электроне". Вскоре после этого в 1930 г. Дирак развил общую теорию, в которой объединялись релятивизм и волновая механика, и он смог объяснить тонкую структуру спектра, не постулируя специально понятие "вращающегося электрона". Вначале это выглядело, как если бы идея "вращающегося электрона" была неверна, но потом Дирак пришел к выводу, что согласно его теории электрон ведет себя так, как будто обладает магнитным моментом, поэтому и не было нужды постулировать это отдельно. Во всяком случае, он не может себя вести иначе.

Далее интересно уделить внимание определению электронного заряда е, так как эта величина тесно связана с вычислениями атомных величин. Первые эксперименты были осуществлены Таупсендом в Кавендише в 1897 г., когда я уже был там. Он обнаружил конденсацию облачка на водороде, полученном при электролизе и пробулькивающем через воду. Оказалось, что это облачко заряжено, и Таунсенд следующим образом определил величину заряда одной капли. Вес всего облачка определялся путем осаждения его и взвешивания на весах. Средний вес каждой капли определялся измерением скорости падения облачка на основе закона Стокса. Отсюда рассчитывалось число капель. Так как суммарный заряд, переносимый облачком, тоже мог быть измерен, то оказалось возможным определить величину заряда одной капли. Этот метод не дал точного значения заряда электрона, так как многие капли были многократно заряжены, но он интересен тем, что практически включал все идеи, которые в дальнейшем применялись при точных измерениях заряда.

В 1908-1913 гг. Дж.Дж. Томсон применил метод, при котором облачко образовывалось при расширении и его вес определялся по известному коэффициенту расширения. Вильсон приложил электрическое поле, так что заряженные капли могли либо оставаться в равновесии, либо двигаться вниз или вверх. В 1908 г. Гейгер и я подсчитали число -частиц, испущенных определенным количеством радия, а затем определили общий заряд, который они перенесли. Мы получили значение 4,65x10-10 эл.-стат. ед., значительно больше величины 3,4x10-10 эл.-стат. ед., выведенной Томсоном, но мы не считали наш метод вполне точным.

В этой связи забавную историю однажды рассказал мне Планк. Когда он впервые выдвинул свою квантовую теорию света, люди не очень охотно ей доверяли, отчасти потому, что согласно этой теории заряд электрона должен быть равен 4,7x10-10, тогда как общепризнанной величиной считалась 3,4x10-10. У самого Планка вызывало сомнение это противоречие, но, когда Гейгер и я обнародовали величину 4,65x10-10, Планк уверовал в справедливость своей теории.

Величина заряда, как вы знаете, была точно измерена Милликеном между 1910 и 1917 гг. Сейчас имеются некоторые сомнения в том, действительно ли его результаты настолько точны, как это первоначально считалось, но я не хочу здесь разбирать этот вопрос.

Теперь я перехожу к более интересному открытию последнего времени. Многие полагали, что в правильно построенной Вселенной должна быть определенная степень симметрии, и там, где имеется отрицательный электрон, должен иметься и положительный электрон такой же малой массы. Хотя положительный электрон часто искали, его не могли обнаружить до 1931 г. В том году Андерсон в Калифорнии фотографировал следы космических частиц, прошедших через туманную камеру Вильсона. Камера находилась в сильном магнитном поле, и Андерсон обнаружил, что некоторые следы искривлены в одном направлении, а другие - в противоположном, т.е. одни были следами положительных частиц, а другие - отрицательных. Полученные другие данные свидетельствовали о том, что массы обеих частиц очень малы, порядка массы электрона. Андерсону очень редко удавалось получать фотографии этих следов, однако в 1933 г. Блэкетт и Оккиалини в Кавендишской лаборатории разработали метод, при котором космические лучи, проходя через прибор, так сказать, "сами себя фотографировали". Благодаря этому методу стало возможным получать много фотографий следов положительных электронов, или "позитронов", как их теперь называют.

Блэкетт интерпретировал эти результаты на основе теории, развитой Дираком в 1931 г. В этой теории предполагалось существование положительных электронов, однако жизнь их должна быть очень короткой, ибо они соединяются с первым попавшимся отрицательным электроном, и это приводит к излучению энергии. В некотором смысле Дирак предсказал положительный электрон до его открытия, однако это предсказание не было явно высказано в теории. Как теория, так и эксперимент указывали на то, что при соответствующих условиях энергия очень коротковолнового излучения, подобная имеющейся, например, в космическом излучении, может исчезать и приводить к образованию пары электронов - одного положительного и одного отрицательного. Наиболее легко это происходит в сильном электрическом поле, окружающем тяжелые ядра, и возможно только в том случае, если квантовая энергия излучения превышает 1 Мэв, что эквивалентно массе электронной пары.

Теперь вернемся к рассмотрению вопроса об атомной структуре. В 1895 г. Ленард поставил свой известный опыт, в котором он направил электроны сквозь тонкое окно в разрядной трубке, в которой они образовались, и так стало возможным наблюдать их вне трубки. Поскольку электроны могли так легко проникать сквозь окно, он сделал вывод, что атомы окна должны иметь очень открытую структуру и между ними долиты быть сравнительно большие промежутки. Он предположил, что в атомах должны быть сферы положительного электричества, связанные как-то с отрицательными зарядами. Год или два спустя Дж.Дж. Томсон детально разработал эту мысль и подсчитал, как отрицательные электроны будут распределены в сфере положительного заряда. Он сумел объяснить таким путем основной принцип периодической таблицы.

Поскольку мои личные интересы были тесно связаны со следующей стадией развития, то я изложу ее более подробно; мне хотелось бы использовать этот пример, чтобы показать, как часто вы натыкаетесь на факты случайно. Очень давно я наблюдал рассеяние -частиц, а Гейгер в моей лаборатории подробно его изучал. Он обнаружил, что на тонких листках тяжелых металлов рассеяние обычно невелико - порядка одного градуса.