Смекни!
smekni.com

Техника высоких напряжений (стр. 2 из 6)

Расчёт производить согласно

;

Дано:

,
,
,
,
,
,

,
,
,
,

Теория:

Коронный разряд, или корона, - это самостоятельный разряд, возникающий в резконеоднородных полях, в которых ионизационные процессы могут происходить только в узкой области вблизи электродов. К такого рода полям относится и электрическое поле проводов воздушных линий электропередачи.

Начальная напряжённость коронного разряда

которая справедлива при отрицательной полярности провода, однако может использоваться и при положительной полярности, поскольку полярности невелико.

При малых радиусов проводов

можно использовать Ф. Пика

- коэффициент гладкости провода.

На линиях электропередачи применяются провода, витые из большого числа проволок. Витые провода не имеют гладкой поверхности, поэтому при одинаковых с гладкими проводами напряжениях и внешних диаметрах напряжённость электрического поля вблизи их поверхности бывает выше и корона возникает при меньшем напряжении. При определении начальной напряжённости коэффициент гладкости

учитывает форму поверхности витого провода. Для проводов различных марок коэффициент гладкости
.

При коронном разряде в результате ионизации воздуха у поверхности провода образуется объёмный заряд того же знака, что и полярность напряжения на проводе.

Напряжённость поля у поверхности провода во время коронирования остаётся равной

. Увеличение напряжения на проводе приводит к усилению ионизационных процессов, росту объёмного заряда и снижению напряжённости до
. Вследствие увеличения объёмного заряда потери энергии на корону растут тем в большей степени, чем больше напряжение на проводе превосходит начальное напряжение

- высота одиночного провода над землёй.

Так как объёмный заряд при любой полярности провода перемещается от провода к земле, напряжённость поля у поверхности провода стремится увеличиться. Однако из-за усиления при этом ионизации воздуха объёмный заряд вблизи провода пополняется и напряжённость поля в итоге сохраняется равной

. Таким образом, вследствии непрерывного удаления объёмного заряда от провода коронный разряд может поддерживаться неограниченно долго.

При больших диаметрах проводов напряженность электрического поля в окрестности провода уменьшается значительно медленнее, чем вблизи проводов малого диаметра. Поэтому зона ионизации- ‘чехол’ короны – имеет большие размеры, и даже при начальном напряжении лавины могут достигать критической длины. Корона в этом случае возникает сразу в стримерной форме; структура зоны ионизации дискретна, светятся многочисленные стримерные каналы.

На проводах малых диаметров (до 1 см) корона возникает в лавинной форме. Зона ионизации достаточно однородна, свечение сосредоточено в узком чехле. Однако при увеличении напряжения сверх начального размеры зоны ионизации возрастут и корона из лавинной переходит в стримерную.

Ток стримерной короны состоит из отдельных импульсов с очень крутым фронтом (длительность фронта – порядка десятков наносекунд). Это высокочастотная составляющая тока корона является источником интенсивного электромагнитного излучения с широким спектром частот, которое создаёт помехи радио- телевизионному приёму. При коронировании проводов линий сверхвысокого напряжений может также возникать звуковой эффект, особенно сильный при дожде.

Объёмный заряд короны, образовавшийся в один из полупериодов перменного напряжения, за время до изменения полярности провода может переместится на несколько десятков сантиметров. Вследствие этого объёмные заряды обоих знаков совершают возвратно-поступательное движение вблизи провода, медленно удаляясь от него в область слабого поля, и там рекомбинируют. Только несущественная часть объёмного заряда может дойти до проводов соседних фаз. Вследствие этого процессы коронирования каждой из фаз трёхфазной линии не влияют друг на друга (эффект биполярности отсутствует), и каждая фаза может рассматриваться изолированно от других.

Для того чтобы исключить потери энергии на корону, а также и радиопомехи, начальное напряжение короны должно быть не ниже наибольшего рабочего напряжения линии относительно земли. Обеспечить это соотношение надлежащим выбором диаметра проводов можно только для условий сухой погоды. При атмосферных осадках исключить коронирование проводов невозможно.

Условие исключения короны:

принимая
,
и
(характерное значение для линий
), получаем

Для линий электропередач 110кВ наименьшие диаметры проводов, при которых исключается корона в хорошую погоду, оставляют

.

При номинальных напряжениях 330 кВ и выше необходимы провода ещё большего диаметра, во многих случаях превышающий диаметр, выбранный из условия передачи по линий заданной мощности. В таких случаях целесообразно иметь провода, площадь поперечного сечения которых по проводящему материалу и диаметру независимы. Это так называемые расширенные провода. Они имеют диаметр, при котором обеспечивается необходимое снижение напряжённости поля на их поверхности, а для сокращения площади поперечного сечения делаются полыми или со стеклопластиковой сердцевиной.

Другое решение, получившее в настоящее время широкое распространение, было предложено ещё в 1910 г. Акад. В.Ф. Миткевичем и состоит в применении расщепленных проводов фаз. В этом случае каждая фаза линии состоит вместо одного провода большого диаметра из нескольких параллельных проводов относительно малого диаметра. В такой конструкции фазы удаётся при требуемом суммарном сечении проводов существенно уменьшить максимальную напряжённость поля на их поверхности.

При переменном напряжении корона зажигается в момент, когда напряжённость поля у провода достигнет значения

, и горит, пока напряжение не достигнет максимума. После этого напряжённость поля у провода становится ниже
, и корона потухает.

· Годовые потери на корону,

· Среднегодовая мощность потерь,

где n – число проводов во всех трёх фазах с учётом расщепления;

r – радиус провода в расщеплённой фазе;

Р – потери мощности при различных погодных условиях, км;

h – продолжительность отдельных видов погоды, час.

· Одним из способов оценки потерь энергии на корону является расчёт с использованием обобщённых характеристик потерь для разных погодных условий [1].

Они представлены в координатах:

,

где

– начальная напряжённость поля,
;