Смекни!
smekni.com

Технологія одержання квантових точок (стр. 3 из 6)

Пара електрон-дірка може бути генерована у квантовій точці фотоіндукованим процесом або інжекцією заряду. Мінімальна енергія

, що потрібна для створення електрон-діркової пари у квантовій точці, має кілька складових. Одна складова - це енергія забороненої зони масивного матеріалу
. Іншою важливою складовою є енергія обмеження для носіїв, рівна
. Для великих частинок (масивних:
)
прямує до нуля. Можна оцінити загальну енергію обмеження для електрон-діркової пари у сферичній квантовій точці. Це є енергія нульової точки потенціальної ями, або, іншими словами, енергія стану у потенціальній ямі з найнижчою енергією. Це можна записати як

(1.4)

де

- приведена маса екситону:

. (1.5)

Тут

та
- ефективні маси для електронів та дірок відповідно. Для того, щоб обчислити енергію, потрібну для утворення електрон-діркової пари, необхідно розглянути інший член (
). Кулонівська взаємодія
враховує взаємне притягання між електроном та діркою, помножене на коефіцієнт, що описує екранування носіїв кристалом. На відміну від
, фізичне значення цього члену може бути зрозумілим у рамках класичної електродинаміки. Але оцінити такий член можливо тільки якщо відомі хвильові функції для електрону та дірки. Величина (сила) екрануючого коефіцієнту залежить від діелектричної постійної
напівпровідника. Оцінка кулонівського члену дає

(1.6)

Цей член може бути достатньо великим, оскільки середня відстань між електроном та діркою у квантовій точці може бути мала. Можна оцінити величину забороненої зони сферичної напівпровідникової квантової точки й отримати її залежність від розміру точки:

. (1.7)

Підставивши (1.4) та (1.6) у (1.7), отримаємо:

. (1.8)

Тут підкреслено розмірну залежність кожного члена. Рівняння (1.8) є тільки першим наближенням. Багато ефектів, таких як анізотропія кристалу та спін-орбітальна взаємодія, слід розглядати у більш строгих наближеннях.

Розглянуте наближення для забороненої зони квантової точки включає два члени, які залежать від розмірів: енергія обмеження, яка змінюється з

, та кулонівське притягання, яке змінюється з
. Енергія обмеження завжди є позитивним членом, отже, енергія найнижчого можливого стану завжди вища по відношенню до ситуації у масивному тілі. З іншого боку, кулонівська взаємодія завжди є притяганням для системи електрон-діркова пара і таким чином зменшує енергію її утворення. Завдяки залежності від
ефект квантового обмеження стає домінуючим членом для дуже малих розмірів квантової точки. Залежність забороненої зони від розмірів є корисним фактором при конструювання матеріалів з контрольованими оптичними властивостями [7].

1.3 Різноманіття квантових точок

Перед тим, як розглядати електронні та оптичні властивості квантових точок, розглянемо як практично отримуються квантові точки. Технології та методи отримання квантових точок повинні бути спроможні виробляти значну кількість зразків з таким високим контролем розміру квантової точки, форми та монодисперсності, щоб одночастинкові властивості не усереднювалися неоднорідністю зразка. До цих пір ансамблі квантових точок, вироблених з використанням найкращих технологій, все ще залежать від розмірів, але ця область розвивається дуже швидко. Різні технології та методи призводять до різних типологій квантових точок.

Рис. 1.3. Залежність забороненої зони

від розміру для колоїдних наноточок CdSe діаметром d.

Для масивного зразка значення енергетичної щілини

. Теоретична крива отримана з використанням рівняння (1.8) з наступними параметрами: ефективна маса електронів/дірок
,
, m0 - маса вільних електронів (
)
, діелектрична стала
,
, постійна Планка
, 1 еВ = 1.602 10-19Дж. Експериментальні дані були отримані із спектрів поглинання квантових точок CdSe різних розмірів та за допомогою у електронної мікроскопії на пропускання (ПЕМ).

Обмеження можна отримати декількома різними шляхами; крім того, квантова точка може бути спеціально розміщена по відношенню до свого оточення: вона може розміщатися у матриці або вирощена на підкладці або може бути „вільною” наночастинкою. Кожний з цих випадків строго пов’язаний з методом одержання [8].


Розділ 2. Отримання квантових точок

2.1 Літографічний метод

Літографічно отримані (визначені) квантові точки формуються шляхом ізоляції малої області двовимірної електронної системи тунелюючими бар’єрами з її оточення. Такі двовимірні електронні системи (

) або
газ електронів можуть бути знайдені у структурах польових транзисторів - метал-окис-напівпровідник (
) або у так званих напівпровідникових гетеро структурах. Гетеро структури складаються з кількох тонких шарів різних напівпровідників, вирощених один на іншому, з використанням так званого методу молекулярно-променевої епітаксії (МПЕ. В англійському скороченні
). Послідовність шарів можна вибирати таким чином, щоб всі вільні носії заряду містилися у тонкому шарі кристалу, формуючи двовимірну електронну систему. Надструктура, яка отримується періодичним повторенням цієї послідовності шарів, називається „багатократна квантова яма”. Однією з найбільш досліджених систем є квантова яма алюміній галій арсенід/арсенід галію (
).
має таку ж саму постійну решітки, як і
, але ширшу заборонену зону, значення якої залежить від вмісту алюмінію у шарі. Таким чином, електрони у шарі
містяться у цьому шарі (обмежені цим шаром) і формують двовимірний газ електронів [9].

Системи квантових точок можуть бути генеровані у поздовжньому або вертикальному оточенні, як показано на рис. 2.1. У поздовжній геометрії

(двовимірний електронний газ) локально електростатично збіднюється при прикладенні негативної напруги на електроди, нанесені на поверхню кристалу. Можна зрозуміти цей ефект з наступних міркувань. Нехай ми прикладаємо негативну напругу на металеві електроди над двовимірним газом електронів. Завдяки електростатичній взаємодії електрони будуть відштовхуватися електричним полем електродів, тому область
нижче електродів буде збіднена електронами. Область, збіднена зарядами, поводиться як діелектрик. Таким чином, шляхом прикладання електричного поля до металевих електродів відповідної форми можливо створити острівці зарядів, ізольовані від решти
. Якщо острівок у межах
достатньо малий, він поводиться як квантова точка. У вертикальній геометрії малий вертикальний стовпчик
ізольований шляхом травлення гетероструктури навколо нього. У такому оточенні носії заряду знову стають обмеженими у всіх трьох напрямках.