Смекни!
smekni.com

Устройство и принцип работы растрового электронного микроскопа (стр. 2 из 7)

Следующим шагом вперёд было усовершенствование детектора, описанного Зворыкиным и др. Эверхарт и Торнли непосредственно соединили световодом сцинтиллятор с торцом фотоумножителя. Это усовершенствование привело к повышению сигнала и улучшению отношения сигнал/шум, что в свою очередь дало возможность лучше исследовать механизмы формирования слабого контраста.

Под руководством Никсона Пиз создал систему с тремя магнитными линзами, пушкой в нижней части прибора и детекторной системой Эверхарта-Торнли, известную как РЭМ V. Этот прибор был прототипом прибора марки I фирмы Cambridge Scientific Instruments и во многом был подобен прибору 1942г. Естественно, что РЭМ V включал все вышеуказанные усовершенствования, которые были введены после 1952г.

Промышленный прибор был сконструирован Стьюартом с сотрудниками в Cambridge Scientific Instruments Co. В последующем десятилетии свыше 1000 растровых электронных микроскопов были проданы рядом фирм-производителей США, Великобритании, Франции, Голландии, Японии и ФРГ, которые активно занимаются разработкой новых модернизированных приборов. Однако даже сейчас РЭМ в своей основе ненамного отличается от описанного в 1942г.

Начиная с 1965г. в конструкцию растрового электронного микроскопа было введено много новшеств. Одним из них был разработанный Броэрсом источник электронов с катодом из гексаборида лантана - LaB

. Электронная пушка с таким катодом обладает высокой яркостью, в результате чего стало возможным сконцентрировать больший электронный ток в меньшем по сечению пучке. Это может привести к эффективному улучшению разрешения. Источник электронов с автоэмиссионным остриём, который использовался впервые в растровом электронном микроскопе в 1942г., был доработан Крю, и его стало возможным использовать для получения изображений с высоким разрешением. Автоэмиссионная пушка превосходна для получения высоких разрешений из-за её очень высокой яркости и чрезвычайно малых размеров источника. Вследствие этого даже при очень малых токах пучка, порядка10
Å можно получить очень большую плотность тока, достигающую несколько тысяч ампер на квадратный сантиметр. Автоэмиссионные источники имеют два потенциальных недостатка, один из которых - быстрое ухудшение разрешения при работе с токами, превышающими несколько наноампер, и другой связан с тем, что источник не столь стабилен, как требуется. Из-за последнего для получения качественного изображения с такими источниками почти всегда необходимо работать с быстрой развёрткой.

Другие усовершенствования связаны с механизмами контраста, которые нелегко реализовать в приборах других типов. Так, кристаллографический контраст, формирующийся за счёт ориентации кристалла и взаимодействия его решётки с первичным пучком, был обнаружен Коутсом и первоначально разработан сотрудниками Оксфордского университета. Магнитный контраст в некоторых некубических материалах наблюдался одновременно, но независимо Бэнбери и Джоем. Магнитный контраст в кубических материалах впервые наблюдался Филибером и Тиксье, а механизм контраста был объяснён позже Фазерсом и др.

Часто контраст наблюдаемых деталей настолько незначителен, что оказывается незаметным для глаза, в связи с чем становилось необходимым усиление контраста за счёт обработки сигнала. Вначале обработка сигнала включала нелинейное усиление сигнала и дифференциальное усиление (подавление уровня чёрного), как это было сделано в растровом электронном микроскопе в Кембриджском университете. Использование при обработке производной сигнала (дифференцирования) для подчёркивания мелких деталей было введено позже. Большинство серийных растровых электронных микроскопов, которые выпускаются в настоящее время, обладают всеми этими возможностями обработки сигнала.

Обработка изображения может проводиться либо в аналоговой, либо в цифровой форме. Были разработаны системы для запоминания изображений; таким образом, можно наблюдать изображение и работать с ним, включив пучок. Такие устройства чрезвычайно полезны, стоимость их не слишком высока, но они не могут обеспечить такую универсальную обработку, как полная обработка изображения с помощью малой ЭВМ. Уайт с сотрудниками разработал серию программ для обработки изображений с помощью малой ЭВМ, которые называются CESEMI и с помощью которых можно получать большое количество информации, такой , как размер зёрен, количество присутствующих фаз и т.д. Для использования всех возможностей этих программ требуется сканирование по точкам, при котором координаты точек изображения и интенсивность сигнала в точке подаются на ЭВМ. Фактически ЭВМ находится во взаимодействии с растровым электронным микроскопом и управляет его работой.

Большая глубина фокуса, присущая растровому электронному микроскопу, позволяет осуществлять стереонаблюдение трёхмерных объектов. Разработаны приспособления, которые используют эту особенность прибора и позволяют получить количественные характеристики топографии поверхности. Описаны также устройства для прямого стереонаблюдения образцов в растровом электронном микроскопе.

Добавление детектора рентгеновского излучения с дисперсией по энергии к рентгеновскому микроанализатору послужило сигналом к возможному сопряжению таких приставок с растровым электронным микроскопом. Сейчас большинство растровых электронных микроскопов оснащено устройствами для рентгеновского анализа. Таким образом, зачастую быстро и эффективно может быть получена информация о топографии, кристаллографии и составе исследуемого образца.


1.2 Устройство и работа растрового электронного микроскопа

В основе работы микроскопа лежит принцип сканирования исследуемой поверхности тонким электронным зондом.

В результате взаимодействия зонда с веществом образуются разные токи, которые улавливаются соответствующими приёмниками и преобразуются в видеосигнал. Полученный видеосигнал поступаёт на телевизионный тракт, где он усиливается, преобразуется в телевизионный сигнал с последующим воспроизведением изображением на экране кинескопа видеоконтрольного устройства .

Тонкий электронный зонд на поверхности исследуемого образца формируется электронной оптической системой микроскопа (рисунок 1.5),которая включает в себя:

а) источник электронов – электронная пушка;

б) две формирующие электромагнитные линзы – конденсор и объектив;

в) стигматор;

г) отклоняющая система.

Трехэлектродная электронная пушка состоит из «V» образного катода прямого накала, управляющего электрода и анода. Анод пушки заземлен, а к катоду приложено ускоряющее напряжение отрицательной полярности. На управляющий электрод, подается отрицательное (относительно катода) напряжение смещения, которое позволяет регулировать ток пучка, выходящего из пушки, Напряжение смещения образуется в результате протекания тока эмиссии катода по сопротивлению смещения. Известно два режима работы пушки: режим насыщения и режим пространственного заряда.

а) В режиме насыщения эмитированного с катода электроны непосредственно используются для формирования пучка. В этом режиме пучок имеет структуру, определяемую неоднородностями эмиссии с катода. Эти неоднородности видны на контрольном экране в виде расходящихся полос. Вызываются они структурой вольфрамовой проволоки, образовавшейся в процессе изготовления. Режим насыщения образуется при недостаточной эмиссии катода (т.е. при недостаточном токе накала) и малом (по абсолютной величине) напряжении смещения. Этому может также способствовать слишком большая длина катода, в результате чего его вершина входит внутрь отверстия управляющего электрода.

б) В режиме пространственного заряда перед катодом образуется электронное облачко пространственного заряда, которое и является непосредственным источником. В облаке происходит усреднение электронов, эмитированных различными участками катода, поэтому электронный пучок не несет на себе следов структуры самого катода.