Смекни!
smekni.com

Физика, основы теории (стр. 11 из 14)

Под действием внешнего магнитного поля происходит ориентация магнитных моментов доменов по направлению этого поля, поэтому результирующее магнитное поле в ферромагнетике усиливается (В

В0).

Когда все магнитные моменты доменов под действием внешнего магнитного поля оказываются ориентированными по направлению этого поля, наступает насыщение ферромагнитного образца.

При температуре выше точки Кюри доменная структура разрушается и ферромагнетик теряет присущие ему свойства.

Ферромагнетики при намагничивании могут деформироваться. Это явление называется магнитострикцией.

14. Магнитный поток. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Токи Фуко

Вαn

S

В случае однородного магнитного поля магнитный поток через поверхность находится по формуле: Ф = BS cosα,где В - модуль вектора магнитной индукции,S - площадь поверхности, α - угол между вектором магнитной индукции и нормалью к поверхности (нормаль - вектор, перпендикулярный поверхности). Магнитный поток в системе СИ измеряется в веберах.1 Вб = 1Тл · м² 1Вб = 1 В · с

В 1831 г. Фарадей экспериментально обнаружил, что во всяком замкнутом проводящем контуре при изменении магнитного потока через поверхность, ограниченную эти контуром, возникает электрический ток. Это явление называют электромагнитной индукцией, а возникающий ток - индукционным. Величина индукционного тока не зависит от способа, которым вызывается изменение магнитного потока, а определяется лишь скоростью изменения Ф.

Согласно правилу Ленца индукционный ток всегда направлен так, чтобы противодействовать причине, его вызывающей. Иными словами, индукционный ток всегда направлен так, что созданное им магнитное поле противодействует тому изменению магнитного потока, которое вызывает данный ток.

Для создания тока в цепи необходимо наличие э.д.с. Поэтому явление электромагнитной индукции свидетельствует о том, что при изменении магнитного потока A в контуре возникает э.д.с. индукции ei. Согласно закону Фарадея-Максвелла э.д.с. индукции, возникающая в контуре, равна скорости изменения магнитного потока, взятой с противоположным знаком.

Мгновенное значение э.д.с. индукции находят по формуле: εi = - dФ∕dt = -Ф´

Среднее значение э.д.с. индукции εi = - ∆Ф⁄∆t

Знак "-" в формулах ставится согласно правилу Ленца.

В случае, когда контур состоит из N витков (т.е. представляет собой соленоид или тороид)

εi = - dΨ∕dt, где Ψ = NФ (Ψ – потокосцепление)

Э.д.с. индукции возникает и тогда, когда контур неподвижен, а магнитное поле изменяется, и в том случае, когда магнитное поле постоянно, а проводник движется с пересечением линий магнитной индукции. Природа э.д.с. индукции в каждом из этих случаев различна.

В первом случае возникновение э.д.с. индукции обусловлено тем, что изменяющееся магнитное поле, в котором находится неподвижный контур, вызывает появление в нем вихревого электрического поля. Это поле не связано с электрическими зарядами, а неразрывно связано с переменным магнитным полем. Силовые линии этого поля замкнуты. При перемещении заряда по замкнутой траектории в этом поле совершается работа, отличная от нуля.

В случае, когда проводник движется в неизменном магнитном поле с пересечением линий магнитной индукции, возникновение э.д.с. индукции обусловлено действием сил Лоренца, т.е. э.д.с. имеет магнитную природу.

Индукционные токи, возникающие в сплошных металлических телах, называют токами Фуко. Чтобы уменьшить их вредное влияние (нагревание сердечников трансформаторов, генераторов переменного тока, электродвигателей) эти сердечники собирают из отдельных изолированных друг от друга пластин. Тепловое действие токов Фуко используется в индукционных печах для выплавки металлов в вакууме, что позволяет получить материалы исключительно высокой чистоты. Вихревые токи, возникающие в проводах, по которым текут переменные токи, направлены так, что ослабляют ток внутри провода и усиливают вблизи поверхности. В результате быстропеременный ток оказывается распределенным по сечению провода неравномерно - он как бы вытесняется на поверхность проводника. Это явление называют скин-эффектом или поверхностным эффектом. Из-за скин-эффекта внутренняя часть проводников в высокочастотных цепях оказывается бесполезной, поэтому проводники для таких цепей изготавливают в виде трубок. Токи Фуко также применяют для успокоения (демпфирования) подвижных частей гальванометров, сейсмографов и других приборов.

15. Явление самоиндукции. Токи при замыкании и размыкании цепи. Энергия магнитного поля

Электрический ток i, текущий в любом контуре, создает потокосцепление (полный магнитный поток) Ψ. При изменении i будет меняться Ψ, и, следовательно, в контуре будет индуцироваться э.д.с. Это явление называют самоиндукцией.

В соответствии с законом Био-Савара-Лапласа напряженность магнитного поля пропорциональна силе тока, вызвавшего поле. Отсюда следует, что ток в контуре i и создаваемый им полный магнитный поток Ψ пропорциональны друг другу:

Ψ = Li.

Коэффициент пропорциональности L между силой тока и полным магнитным потоком Ψ называют индуктивностью контура. Наблюдения и расчет показывают, что индуктивность контура зависит от его формы, размеров, числа витков и магнитной проницаемости сердечника (если он помещен в контур).

При изменении силы тока в контуре возникает э.д.с. самоиндукции. В случае, когда индуктивность контура неизменна, э.д.с. самоиндукции можно вычислить по формуле:

εs = - L di/dt = - L і′

Индуктивность проводника численно равна э.д.с. самоиндукции, возникающей в данном проводнике при изменении в нём тока на единицу тока за единицу времени. Единицу силы тока устанавливают из этой же формулы:

1В 1С = 1 Ом ·с = 1 Гн (генри)

Явление возникновения э.д.с. индукции в одном из контуров при изменении силы тока в другом называют взаимной индукцией.

По правилу Ленца дополнительные токи, возникающие в проводнике вследствие самоиндукции, всегда направлены так, чтобы препятствовать изменениям тока, текущего в цепи. Это приводит к тому, что установление тока при замыкании цепи и убывание тока при размыкании цепи происходит не мгновенно, а постепенно.

Экстраток размыкания тем больше, чем большее число витков имеет контур. Поэтому в цепях тех электродвигателей и электрогенераторов, где после размыкания цепи остаются замкнутые контуры, вместо рубильников ставят рычажные реостаты, при пользовании которыми исключается возможность возникновения больших экстратоков.

Э.д.с самоиндукции противодействует увеличению электрического поля в цепи, возникающего при её замыкании, т.е. при подключении к ней источника тока. Поэтому для создания в проводнике с индуктивностью L тока должна быть совершена работа против сил вихревого электрического тока, появляющегося в проводнике с током при изменении его магнитного поля. Эта работа совершается за счет энергии источника тока, создающего ток в данном проводнике. Из закона сохранения энергии следует, что при этом энергия источника тока превращается в энергию магнитного поля тока. Энергию магнитного поля проводника с током определяют по формуле:

Wм = LI² /2

16. Электрический ток в металлах. Элементарная классическая теория проводимости металлов

Для выяснения природы носителей тока в металлах был поставлен ряд опытов.

Опыт Рикке (1901 г.)

Cu Al Cu

Три цилиндра с тщательно отполированными торцами складывались в один составной проводник, по которому в течение года в одном направлении пропускался электрический ток. Вес цилиндров не изменился. Следовательно, перенос заряда в металлах осуществлялся не атомами, а другими частицами, входящими в состав металлов. Такими частицами могли быть открытые Томсоном электроны.

Опыты Мандельштама и Папалекси (1913 г.), Стюарта и Толмена (1916 г.)

На катушку намотана проволока, присоединенная к чувствительному гальванометру. Катушку приводили во вращение, а затем резко тормозили. В момент торможения гальванометр показывал кратковременный ток, направление которого свидетельствовало о том, что он создается движением отрицательно заряженных частиц. Стюарт и Толмен определили удельный заряд q/m частиц. Он практически совпал с удельным зарядом электрона. Тем самым было доказано, что электрический ток в металлах представляет собой упорядоченное движение электронов.

В начале ХХ века Друде и Лоренцем была создана классическая электронная теория проводимости металлов. Её основные положения заключаются в следующем.

Металлы имеют кристаллическую решетку, в узлах которой находятся положительные ионы, а между ними движутся свободные электроны (электроны проводимости). Электроны проводимости ведут себя подобно одноатомному идеальному газу. В промежутках между соударениями они движутся совершенно свободно, пробегая в среднем некоторый путь λ. Однако, в отличие от атомов газа, пробег которых определяется соударением атомов друг с другом, электроны сталкиваются преимущественно не между собой, а с ионами кристаллической решетки. Эти столкновения приводят к установлению теплового равновесия между электронным газом и кристаллической решеткой.