Смекни!
smekni.com

Характер физических законов (стр. 2 из 3)

Работа Д. Джоуля, Ю. Майера и других установили так называемое первое начало термодинамики. Р. Клаузиус первым высказал мысль об эквивалентности работы и количества теплоты как о первом начале термодинамики. Всякое тело имеет внутреннюю энергию, которую Клаузиус назвал «теплом содержащимся в теле» (U) в отличие от «тепла, сообщенного телу» (Q). Величину U можно увеличить двумя эквивалентными способами — произведя над телом механическую работу (А) или сообщая ему количество теплоты (Q).

Общепризнанным является тот факт, что распространение тепла представляет собой необратимый процесс и тепло передается от горячего тела к холодному, а не наоборот. Важной концепцией термодинамики является то, что Клаузиус определил, что при работе тепловой машины не все количество теплоты, взятое у нагревателя, передается холодильнику. Часть этой теплоты превращается в работу, совершаемую машиной. Клаузиус показал, что объяснение превращения теплоты в работу основывается еще на одном принципе, сформулированном С. Карно, утверждающим, что в любом непрерывном процессе превращения теплоты от горячего нагревателя в работу непременно должна происходить отдача теплоты холодильнику. Совершаемая при этом тепловая работа (А) оценивается коэффициентом полезного действия (η) следующим образом: η = A/Q1, где Q — количество теплоты, переданное нагреванием. Максимальный коэффициент полезного действия имеет идеальная тепловая машина, работающая по циклу Карно, коэффициент полезного действия которой определяется как

η = (Т1 – Т2)/Т1,

где Т1 — абсолютная температура нагревателя; Т2 — абсолютная температура холодильника.

Таким образом, имеет место общее свойство теплоты, заключающееся в том, что теплота «всегда обнаруживает тенденцию к уравниванию температурной разницы путем перехода от теплых тел к холодным». Это положение Клаузиус предложил назвать «вторым основным положением механической теории теплоты», и в современную науку оно вошло как второе начало термодинамики.

Все эти многочисленные факты и нашли свое обобщение и теоретическое объяснение в законах классической термодинамики:

1. Если к системе подводить тепло Q и над ней производить работу А, то энергия системы возрастает до величины U: U = Q + А. Эту энергию U называют внутренней энергией системы.

2. Невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре, т. е. тепло не может перетечь самопроизвольно от холодного тела к горячему.

В первом законе речь идет о сохранении энергии, во-втором— о невозможности производства работы исключительно за счет изъятия тепла из одного резервуара при постоянной температуре, т. е. о направлении тепловых процессов в природе.

В 1865 г. немецкий физик Рудольф Клаузиус для формулировки второго закона термодинамики ввел новое понятие — «энтропия» (от греч. entropia — поворот, превращение). Клаузиус рассчитал, что существует некоторая величина S, которая подобно энергии, давлению, температуре характеризует состояние газа. Когда к газу подводится некоторое количество теплоты, AQ, то энтропия S возрастает на величину, равную AS = AQ/T.

В течение длительного времени ученые не делали различий между теплотой и температурой. Однако ряд явлений указывал на то, что эти понятия следует различать. Например, при плавлении кристаллического тела теплота расходуется, а температура тела не изменяется в процессе плавления. После введения Клаузиусом понятия энтропии стало понятно, где пролегает граница четкого различия таких понятий, как теплота и температура. Дело в том, что нельзя говорить о каком-то количестве теплоты, заключенном в теле. Это понятие не имеет смысла. Теплота может передаваться от тела к телу, переходить в работу, возникать при трении, но при этом она не является сохраняющейся величиной. Поэтому теплота определяется в физике не как вид энергии, а как мера изменения энергии. В то же время введенная Клаузиусом энтропия, как и температура, оказалась величиной, сохраняющейся в обратимых процессах; это означает, что энтропия системы может рассматриваться как функция состояния системы, ибо изменение ее не зависит от вида процесса, а определяется только начальным и конечным состоянием системы.

Было также показано, что изменение энтропии в случае обратимых процессов не происходит, т. е. AS = 0. Значит, энтропия изолированной системы в случае обратимых процессов постоянна. При необратимых процессах получаем закон возрастания энтропии: ΔS > 0.

3 Проблема «тепловой смерти Вселенной»

Классическая термодинамика оказалась не способной решить космологические проблемы характера протекания процессов, происходящих во Вселенной. Уильям Томпсон экстраполировал принцип возрастания энтропии на крупномасштабные процессы, протекающие в природе. На основе этого Р. Клаузиус распространил этот принцип на Вселенную в целом, что привело его к гипотезе о «тепловой смерти Вселенной». Все физические процессы, согласно второму началу термодинамики, протекают в направлении передачи тепла от более горячих тел к менее горячим. Это означает, что медленно, но верно идет процесс выравнивания температуры во Вселенной. Следовательно, будущее вырисовывается перед нами в достаточно трагических тонах, ожидается исчезновение температурных различий в природе и превращение всей мировой энергии в теплоту, равномерно распределенную во Вселенной. Отсюда Клаузиус выдвинул два постулата:

1. Энергия Вселенной всегда постоянна.

2. Энтропия Вселенной всегда растет к максимуму.

Если принять второй постулат, то необходимо признать, что процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующего максимуму энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет нельзя.

Вытекающий отсюда вывод о грядущей тепловой смерти Вселенной, означает прекращение каких-либо физических процессов вследствие перехода Вселенной в равновесное состояние с максимальной энтропией. На протяжении всего дальнейшего развития этот вывод привлекает внимание ученых, ибо затрагивает не только глубинные проблемы чисто научного характера, но также философско-мировоззренческие аспекты, указывающие определенную верхнюю границу возможного существования человечества. Такие мрачные прогнозы встретили критику со стороны ряда выдающихся ученых. Однако в середине XIX века мало было научных аргументов для опровержения мнения Р. Клаузиуса. Только единицы догадывались, что понятие закрытой, или изолированной, системы является далеко идущей абстракцией, не отражающей реальный характер систем, которые встречаются в природе.

С научной точки зрения возникают проблемы правомерности следующих экстраполяций, высказанных Клаузиусом:

1. Вселенная рассматривается как замкнутая система.

2. Эволюция мира может быть описана как смена его состояний.

Проблемы эти представляют несомненную трудность и для современной физической теории. Решение их следует искать в общей теории относительности и развивающейся на ее основе современной космологии. Многие теоретики считают, что в общей теории относительности мир как целое должен рассматриваться не как замкнутая система, а как система, находящаяся в переменном гравитационном поле. В связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости в нем статистического равновесия.

XX век вносит коррективы в изучение проблем эволюции Вселенной. Формируется новое междисциплинарное направление — синергетика, и на его основе возникает теория самоорганизации сложных систем. В отличие от закрытых, или изолированных, реальными системами в природе являются открытые системы. Они обмениваются с окружающей средой энергией, веществом и информацией. Опыт и практическая деятельность свидетельствовали, что понятие закрытой, или изолированной, системы представляет собой далеко идущую абстракцию и потому она слишком упрощает и углубляет действительность, поскольку в ней трудно или даже невозможно найти системы, которые бы не взаимодействовали с окружающей средой. Поэтому в новой термодинамике место закрытой изолированной системы заняло принципиально иное фундаментальное понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией и информацией.

Открытая система не может быть равновесной, потому что ее функционирование требует непрерывного поступления из внешней среды энергии или вещества, богатого энергией. В результате такого взаимодействия система, как указывал Эрвин Шредингер, извлекает порядок из окружающей среды и тем самым вносит беспорядок в эту среду. В открытых системах также производится энтропия, поскольку в них происходят необратимые процессы, но энтропия в этих системах не накапливается, как в закрытых системах, а выводится в окружающую среду. Поскольку энтропия характеризует степень беспорядка в системе, постольку можно сказать, что открытые системы живут за счет заимствования энергии или вещества из внешней среды. Очевидно, что с поступлением новой энергии или вещества неравновесность в системе возрастает. В конечном счете прежняя взаимосвязь между элементами системы, которая определяет ее структуру, разрушается. Между элементами системы возникают новые связи, которые приводят к кооперативным процессам, т. е. к коллективному поведению ее элементов. Так, схематически могут быть охарактеризованы процессы самоорганизации открытых систем. Как отмечает основоположник теории самоорганизации И. Р. Пригожин, переход от термодинамики равновесных состояний к термодинамике неравновесных процессов, несомненно, знаменует прогресс в развитии ряда областей науки.