Смекни!
smekni.com

Электродинамические усилия в электрических аппаратах (стр. 3 из 4)

(40)

На единицу длины витка приходится сила

(41)

Для того чтобы найти силу FR, стремящуюся разорвать виток, необходимо проинтегрировать проекции радиальных сил, действующих на четверти витка. На элемент окружности витка Rdφдействует сила fRRdφ,проекция которой на ось х равна fRRdφ cosφ, откуда

(42)

Для витка круглого сечения при R>>r

(43)

и

(44)

Аналогично для витка прямоугольного сечения

(45)

и

(46)

Для нескольких витков

Приведенные формулы для электродинамических сил применимы не только к одному витку, но и к обмоткам с любым числом витков п, занимающим данное сечение. В этом случае за значение тока следует принимать суммарное значение тока всех витков i =niв.

В катушках аппаратов, кроме сил, действующих внутри каждого витка, будут существовать электродинамические силы между витками. Между витками (рис. 11а), если считать, что токи в них направлены одинаково, возникает сила притяжения F. Силу Fможно представить как результирующую двух составляющих, а именно силы Fy, стремящейся притянуть витки друг к другу, и силы Fx, стремящейся один из витков (при одинаково направленных токах — виток с меньшим диаметром) растянуть, а другой виток (в данном случае виток большего диаметра) — сжать. Таким образом, в одном из витков сила Fxбудет складываться с силой FR, а в другом — вычитаться из нее.

Значения составляющих силы взаимодействия между двумя витками определяются уравнениями:

(47)

(48)

где c = R2-R1; R2> R1. Зависимости Fxи Fyот расстояния между витками представлены на рис. 11, б и в.

6. Электродинамические силы в проводниках переменного сечения

В проводнике силы взаимодействия отдельных линий тока с собственным магнитным полем проводника направлены перпендикулярно линиям тока. При неизменном сечении проводника все линии тока параллельны и силы не имеют осевой составляющей (в цилиндрическом проводнике они направлены по радиусу: F = Frна рис. 12).

При изменении сечения проводника линии тока искривляются, и кроме поперечной Frпоявляется продольная составляющая Flстремящаяся разорвать место перехода вдоль оси проводника. Эта сила всегда направлена в сторону большего сечения и равна

(49)

Формула справедлива для любого перехода.

7. Силы взаимодействия между проводником с током и ферромагнитной массой

Вблизи ферромагнитной массы

Вблизи ферромагнитной массы магнитное поле вокруг проводника с током (рис 13) искажается, магнитные силовые линии стремятся замкнуться по массе и возникают силы, стремящиеся притянуть проводник к этой массе.

Значение силы притяжения может быть определено из следующих соображений. Заменим ферромагнитную массу вторым проводником с током того же направления, расположенным на таком же расстоянии от границы раздела сред. Картина поля при этом не нарушится, так как одновременно с удвоением длины магнитной силовой линии удвоилась и магнитодвижущая сила (2i вместо i), т.е. такая замена вполне правомерна. Силы взаимодействия между двумя параллельными проводниками подсчитываются по уравнениям (19) и (20). Только в данном случае вместо расстояния а надо брать 2а, т.е.

(50)

Следует при этом помнить, что приведенные рассуждения полностью справедливы при бесконечно большой проницаемости магнитных силовых линий в ферромагнитной массе по отношению к их проницаемости в воздухе. Фактически с учетом магнитного сопротивления массы и насыщения силы будут несколько меньшими.

Внутри ферромагнитной массы

Если проводник с током находится внутри ферромагнитной массы (рис. 14), то те же силы будут отталкивать его от границы раздела. Картина поля, а следовательно, и сила взаимодействия будут такими, как если бы за пределами ферромагнитной массы на таком же расстоянии был расположен проводник с таким же током, но обратного направления. Значение силы определяется тем же уравнением (50).

Аналогичные силы притяжения будет испытывать проводник, расположенный в щели постоянного (рис. 15) или переменного (рис. 16) сечения в ферромагнитной массе. Без учета насыщения

(51)

где l - длина щели (перпендикулярно плоскости чертежа); δ и δХ — ширина щели в месте расположения проводника.

В щели постоянного сечения сила, затягивающая проводник вглубь, будет неизменной, а в щели переменного сечения — переменной, возрастающей по мере сужения щели.

Уравнение (51) относится к проводнику, расположенному в щели строго симметрично, когда сила действует по оси х. Однако если проводник окажется смещенным с оси симметрии, то силы притяжения его к противоположным стенкам (по оси у) окажутся неравными. Проводник будет перемещаться по какой-то кривой, показанной штриховой линией, определяемой двумя переменными составляющими сил Fxи Fy.

8. Электродинамические силы при переменном токе

При однофазном токе

Рассмотрим силы, действующие между параллельными проводниками, сначала при однофазном токе.

Согласно выражению (15) электродинамические силы

При переменном токе i = Imsinωtсила

(52)

Т.е. сила меняется с частотой, в два раза большей частоты тока (рис. 17).

Силу f можно представить как сумму двух составляющих: постоянной

и переменной
, меняющейся с двойной частотой по закону косинуса. Так как косинус угла принимает значения от +1 до -1, то сила будет изменяться от
до
не меняя своего знака.

В расчетах учитывается максимальное значение силы

(53)

Из уравнения (53) видно, что при переменном однофазном токе максимальное значение электродинамической силы при одном и том же значении тока (действующем) оказывается в два раза большим, чем при постоянном.

При переменном токе следует иметь в виду еще одно весьма важное обстоятельство. В отличие от постоянного тока, при котором максимальное значение тока короткого замыкания равно его установившемуся значению Iуст (если пренебречь изменением сопротивления за счет нагрева), при переменном токе в зависимости от момента короткого замыкания первая амплитуда ударного тока Iудmax может существенно превосходить амплитудное значение установившегося тока короткого замыкания (рис. 18):

(54)

Максимальное усилие, на которое следует в таком случае рассчитывать устройство, будет

(55)

т.е. при равном значении установившегося тока короткого замыкания при переменном токе электродинамическая сила может быть почти в 6,5 раза большей, чем при постоянном токе.

При трехфазной сети токи в фазах будут сдвинуты на 120 электрических градусов:

При расположении проводников в одной плоскости