Смекни!
smekni.com

Электроснабжение комплекса томатного сока (стр. 2 из 9)

2.1 Определение расчетной электрической нагрузки от силовых

электроприемников на шинах 0,38 кВ цеховых ТП

1. Приводим мощности ЭП, работающих повторно кратковременном режиме работы к длительным режимам работы при ПВ=100%.

1.1Электрические подъемники передвижные ПВ=25%.

(2. 1)

Рп – паспортная мощность, кВт

ПВ – повторное включение, %

1.2 Однофазные ЭП к 3-х фазным.

Сверлильный станок 1 фазный

Рном= 3Рном.ф. Р=

2.Определяем среднесменную активную мощность за максимально загруженную смену:

,кВт (2.2)

3. Определяем суммарную полную мощность.

(2. 3)

4. Определяем коэффициент силовой сборки m:

(2. 4)

5. Определяем средний коэффициент использования:

(2. 5)

6. Определяем эффективное число ЭП, учитывая что m > 3, а

то

(2. 6)

7. Определяем коэффициент максимума:

[1., с. 55, таб. 2.15]

8. Определяем максимальную активную мощность:


(2.7)

9Определяем среднесменную реактивную мощность:

(2.8)

10. Определяем максимальную реактивную мощность

, то

11. Определяем полную максимальную мощность:

(2. 9)

12. Определяем максимальный ток нагрузки.

(2. 10)

2.2 Расчет и выбор компенсирующегоустройства

Активная энергия, потребляемая электроприемниками, преобразуется в другие виды энергии: механическую, тепловую, энергию сжатого воздуха и т.п. Определенный процент активной энергии расходунтся на потери. Реактивная мощность Q не связана с полезной работой ЭП и расходуется на создание электромагнитных полей в электродвигателях, трансформаторах, линиях.

В цепи переменного тока, имеющей чисто активную нагрузку, ток совпадает по фазе с приложенным напряжением. Если в цепь включены электроприемники, обладающие активным и индуктивным сопротивлением (АД, сварочные и силовые трансформаторы), то ток будет отставать от напряжения на некоторый угол φ, называемый углом сдвига фаз (Рисунок 2.1). Косинус этого угла называется коэффициентом мощности.

Рисунок 2.1 Векторные диаграммы

Из рисунка 2.1 видно, что с увеличением активной составляющей тока Iа и при неизменной величине реактивной составляющей Iр, угол φ будет снижаться, следовательно, значение cosφ будет увеличиваться. Наоборот, при неизменной величине Iа с увеличением реактивной составляющей тока Iр, угол φ будет увеличиваться, а значение cosφ будет снижаться.

Генераторы переменного тока и трансформаторы характеризуются номинальной мощностью Sном. Электроприемники характеризуются номинальной активной мощностью Pном и cosφ. Полная мощность источника согласно векторной диаграмме

(2.11)

Если нагрузка источника только активная, т.е. φ=0, а cosφ=1, то S=P и наибольшая активная мощность электроприемников может быть равна номинальной мощности источника. Если cosφ=0,8, то P=0,8Sном. Таким образом, величина cosφ характеризует степень использования мощности источника. Чем выше cosφ электроприемников, тем лучше используются генераторы электростанций и их первичные двигатели; наоборот, чем ниже cosφ, тем хуже используются электрооборудование подстанций и электростанций и всех других элементов электроснабжения.

Компенсация реактивной мощности, или повышение cosφ электроустановок, имеет большое народно-хозяйственное значение и является частью общей проблемы КПД работы систем электроснабжения и улучшения качества отпускаемой потребителю электроэнергии.

Повышение cosφ, или уменьшение потребления реактивной мощности элементами системы электроснабжения, снижает потери активной мощности и повышает напряжение; кроме того, увеличивается пропускная способность элементов электроснабжения.

Величина cosφ задается энергоснабжающей организацией и находится в пределах cosφэ=0,92

Для повышения коэффициента мощности потребителей электроэнергии предполагается провести следующие мероприятия, которые не требуют применения специальных компенсирующих устройств:

1.Упорядочение всего технологического процесса, что приводит к улучшению энергетического режима оборудования, а следовательно, и к повышению коэффициента мощности;

2.Переключение статорных обмоток асинхронных двигателей с треугольника на звезду, если их нагрузка составляет менее 40%;

3.Устранение режима работы асинхронных двигателей без нагрузки (холостого хода) путем установки ограничителей холостого хода;

4.Замена малозагруженных двигателей меньшей мощности при условии, что изъятие избыточной мощности влечет за собой уменьшение суммарных потерь активной энергии в двигателе и энергосистеме;

5.Замена асинхронных двигателей синхронными двигателями той же мощности, где это возможно по технико-экономическим соображениям;

6. Повышение качества ремонта двигателей с сохранением их номинальных данных.

В качестве компенсирующего устройства в курсовом проекте применяется комплектная конденсаторная установка напряжением 0,38 кВ, что обусловлено следующими преимуществами:

1.Небольшие потери активной энергии в конденсаторах;

2.Простота монтажа и эксплуатации;

3.Возможность легкого изменения мощности комплектной конденсаторной установки в результате увеличения или уменьшения числа конденсаторов в фазе;

4.Возможность легкой замены поврежденного конденсатора;

Недостатки комплектной конденсаторной установки:

1.Конденсаторы неустойчивы к динамическим усилиям, возникающим при коротких замыканиях;

2.При включении конденсаторной установки возникают большие пусковые токи до 10Iном;

3.После отключения конденсаторной установки от сети на ее шинах остается заряд, который может быть опасен для обслуживающего персонала;

4.Конденсаторы весьма чувствительны к повышению напряжения (повышение напряжения допускается не более, чем на 10% от номинального);

5.После пробоя диэлектрика конденсаторы довольно трудно ремонтировать, чаще всего их приходится заменять новыми.

Рисунок 2.2 Присоединения конденсаторов к шинам на напряжение 0,38 кВ, где HL – лампа накаливания служит для разряда конденсаторных батареек.

1. Рассчитываем

(2.12)

2. Рассчитываем мощность компенсирующего устройства

(2,13)

(2,14)