Смекни!
smekni.com

Надпровідність та її використання в техніці (стр. 4 из 7)

Рис .11

Тепер про надпровідники ІІ роду. Проміжний стан відповідає ситуації, коли відстань λ<ξ. Але можуть бути речовини, у яких довжина когерентності менше глибини проникнення. Величина 10-4 см відповідає тільки чистим металам, для них поверхнева енергія завжди позитивна. У неоднорідних металах при наявності домішок все інакше. Зіткнення електронів з атомами домішки можуть привести до зниження довжини когерентності ξ. У таких матеріалах, як сплави, довжина когерентності виявляється меншою, і часто в сотні разів, ніж глибина проникнення. Таким чином, надпровідники ІІ роду - це сплави і метали з домішками.

У надпровідниках ІІ роду поверхнева енергія негативна (λ>ξ), тому створення границі розділу між фазами пов'язано із звільненням деякої енергії. Всяке тіло прагне понизити свою енергію, якщо є для цього можливість. У надпровідників з негативною поверхневою енергією така можливість є. Їм енергетично вигідно пропустити у свій обсяг частину зовнішнього магнітного потоку. Речовина при цьому розпадається на деяку суміш із дрібних надпровідних і нормальних областей, границі яких паралельні напрямку прикладеного поля. Такий стан прийнятий називати змішаним.

1.5 Абрикосові вихрі

Надпровідники ІІ роду характеризуються дуже своєрідними електромагнітними властивостями. Дуже цікавою є картина проникнення магнітного поля в товщину такого зразка.

Ще в 1936 р. радянський фізик Л. В. Шубніков, експериментуючи із надпровідними сплавами, знайшов, що магнітне поле проникає в зразок, який частково усе ще залишається надпровідним. Значення поля, при якому починається проникнення, одержало назву нижнього чи першого критичного магнітного поля з індукцією Вк1, а при другому - верхньому критичному значенні магнітного поля з індукцією Вк2 надпровідність цілком зникає у всьому зразку. У проміжку між цими значеннями полів ефект Мейснера виявляється не цілком і надпровідник знаходиться в особливому змішаному стані.

Дуже важливо відрізняти змішаний стан надпровідників ІІ роду від проміжного стану надпровідників І роду. Між ними немає нічого загального. Проміжний стан залежить від форми зразка і розташування його щодо магнітного поля і виникає далеко не завжди. Змішаний же стан є внутрішньою властивістю надпровідників ІІ роду; воно обумовлено самою їхньою природою і виникає завжди в зразках будь-якої форми, як тільки магнітне поле досягає значення цього стану.

Можливість реалізації такого стану у надпровідних сплавах була передбачена ще в 1952 році радянським фізиком А. А. Абрикосовим. Пізніше, у 1957 році, ним був зроблений детальний розрахунок і розроблена теорія змішаного стану. Виявилося, що проникнення магнітного поля в середину надпровідника зв'язано з утворенням у ньому особливої ниткоподібної структури. При частковому проникненні магнітного поля в товщу зразка електрони під дією сили Лоренца починають рухатися по колам, утворюючи своєрідні вихрі. Їх так і називають - абрикосові вихрі. Всередині вихру швидкість обертання електрона зростає в міру наближення до осі вихра , і на деякій відстані від неї відбувається "зрив" надпровідності. Всередині кожного вихру надпровідність зруйнована, але в просторі між ними вона зберігається.

У результаті надпровідний зразок виявляється пронизаний вихровими нитками, що представляють собою тонкі ненадпровідні області циліндричної форми, орієнтовані в напрямку силових ліній магнітного поля (Рис. 12). По цих нитках-циліндриках магнітне поле і проникає в надпровідник.

Рис. 12 Рис .13

Тут не можна не відзначити однієї надзвичайно важливої обставини. Справа в тім, що величина магнітного потоку в кожному циліндрику не довільна, а дорівнює визначеному значенню - значенню порції магнітного потоку Ф0 = 2· 10-15 Вб. Величина Ф0 називається квантом магнітного потоку. Чим більше зовнішнє магнітне поле, тим більше таких ниток-циліндриків, а отже, більше квантів магнітного потоку проникає в надпровідник. Тому магнітний потік у надпровіднику міняється не неперервно , а стрибком, дискретно. Звичайно дискретність фізичних величин виявляється в мікросвіті. Там багато фізичних величин можуть приймати тільки визначені значення, як говорять фізики: величини квантуються . У макроскопічних тілах квантові ефекти звичайно перестають бути помітними, оскільки через хаотичний тепловий рух відбувається усереднення величини по великому числу її різних значень .

Інша справа - низькі температури. Поблизу абсолютного нуля, коли тепловий рух не грає значної ролі, ми зіштовхуємося з дивним явищем - закони квантової механіки починають працювати в макроскопічних масштабах. Приклад тому - квантування магнітного потоку в надпровіднику. Саме у виді квантів магнітного потоку - флюксоїдів - магнітне поле проникає всередину надпровідника.

При збільшенні магнітного поля вихрові нитки зближаються, щільність їх збільшується, і при деякому значенні поля, коли відстань між нитками стає приблизно 10-4 сантиметра , надпровідність руйнується і зразок переходить у нормальний стан.

Сучасна експериментальна техніка дозволяє безпосередньо спостерігати абрикосові вихрі. Для цього на поверхню зразка наносять магнітний порошок. Частинки накопичуються в тих областях, куди проникнуло магнітне поле.

Розміри кожної області невеликі і звичайно складають мільйонні частки метра. Якщо подивитися на поверхню в електронний мікроскоп, то видні темні плями.

Структура абрикосових вихрів, отримана таким способом, показана на рисунку 13. Видно, що вихрі розташовані періодично утворюють комірку, аналогічну кристалічній. Вихрова комірка є трикутною (її можна скласти з повторюваних правильних трикутників).

1.6 Теорія Бардіна-Купера-Шріффера

Багато вчених у різних країнах, використовуючи різні підходи, внесли вклад у створення теорії надпровідності. Першим з них був чудовий радянський фізик Л. Д. Ландау. Він першим зіставив два "дивних" явища - надпровідність і надтекучість і припустив, що ці явища тісно зв’язані між собою . Надпровідність - це надтекучість електронної рідини. Ідея Ландау виявилася дуже плідною , на її основі було побудовано більшість теорій надпровідності.

У 1950 р. В. Л. Гінзбург і Л. Д. Ландау запропонували феноменологічну теорію надпровідності, що дозволила розрахувати ряд суттєвих властивостей надпровідників, описати їхнє поводження в зовнішньому полі. Теорія ця була обґрунтована Л. П. Горьковим , який розробив метод дослідження надпровідного стану, що застосовується зараз у теоретичних розробках.

Наступний крок був зроблений майже одночасно радянським фізиком академіком Н. Н. Боголюбовим і американськими фізиками Бардіним, Купером і Шріффером. Американські учені встигли трохи раніше поставити останню крапку.

Надпровідність, як виявилося, виявляється в тих випадках, коли електрони в металі групуються в пари, що взаємодіють через кристалічну решітку. Вони тісно зв'язані між собою, так що розірвати пари і роз’єднати електрони надзвичайно важко. Такі могутні зв’язки дозволяють електронам рухатися без всякого опору крізь решітку кристала, допомагаючи один одному.

Виходячи з цих представлень, Бардін, Купер і Шріффер у 1957 р. побудували довгоочікувану мікроскопічну теорію надпровідності , за яку вони в 1972 р. були визнані гідними Нобелівської премії. Ця теорія, відома сьогодні за назвою "теорія БКШ", не тільки дозволила з упевненістю сказати, що механізм надпровідності дійсно ясний, але і вперше привела до встановлення зв'язку між критичною температурою Тк і параметрами металу.


2. ВИКОРИСТАННЯ НАДПРОВІДНОСТІ В ТЕХНІЦІ

З часів відкриття надпровідності обговорюються можливості технічного використання цього разючого явища. Незрозуміла провідність не давала спокою і фізикам, і інженерам. Хотілося якнайшвидше переконатися в тому, що вона може дати практичні плоди. Але пройшло майже піввіку, перш ніж надпровідність почала виходити зі стін лабораторій на дорогу практичного застосування. Цьому сприяли кілька обставин. Тут і розвиток техніки низьких температур, і поява теоретичних робіт, що пояснили природу надпровідного стану, і відкриття нових квантових ефектів, і, звичайно, створення надпровідних матеріалів з високими критичними параметрами .

Успіхи експериментального і теоретичного досліджень дали реальну можливість приступити до робіт по освоєнню цього чудового фізичного явища. Надпровідність почала як би друге життя, але тепер уже не в якості зацікавленого лабораторного феномена, а як явище, відкриваюче перед наукою і технікою дуже серйозні перспективи.

Найважливіша область техніки, де застосування надпровідників обіцяло зробити великі зміни, визначилася уже в перші роки після відкриття цього явища - це передача електричного струму і створення сильних магнітних полів.

Можна назвати сотні різноманітних фізичних, технічних і чисто інженерних задач, що поєднуються загальною вимогою: для їхнього здійснення потрібні сильні магнітні поля. Мова йде про енергетику, що створює нові генератори, і про водолазні роботи по підйому затонулих судів, і про фізику, зайняту проблемами термоядерного синтезу і прискоренням заряджених часток до надвисоких енергій... Усе це області, де вимагаються легкі, могутні й економічні магніти. Але ключі до проблеми створення потрібних магнітів учені довгий час не могли знайти. Здавалося б, що тут складного? Досить пустити сильний струм по витках соленоїда, і він стане потужним магнітом. З тих пір як Ампер з'ясував, що соленоїд поводиться так само, як і природний магніт, усі сучасні магніти виготовляються по цьому принципу. У кожному з них є спіраль - обмотка, по якій проходить струм. Чим більша сила струму, тим сильніше магнітне поле.