Смекни!
smekni.com

Обертові, коливні і електронні спектри молекул (стр. 2 из 6)

;

n0 – заселеність основного обертового рівня (j = 0; qj = 0).

Аналіз виразу nj та враховуючи правила відбору (Δj = ±1) показує, що індивідуальні смуги або лінії у спектрі обертання двохатомних молекул знаходяться одна від одної на одинаковій віддалі рівній: Δnоберт =

= 2Воб.

Реальні молекули не є жорсткими ротаторами. При обертанні на ядра діють центробіжні сили, які змінюють міжядерну віддаль, а відповідно і момент інерції. Крім того, в процесі обертання у молекулі можуть проходити коливання ядер. Враховуючи ці фактори, тобто перехід до моделі жорсткого ротатора, приведе до слідуючого виразу Еоб: Еобj =

, де С – постійна. На закінчення необхідно відмітити, що чисто обертовими спектрами поглинання і випромінювання володіють не всі двохатомні молекули. Як показує теорія та експеримент, такі спектри характерні лише для молекул, що мають дипольний момент.

Обертові спектри багатоатомних молекул. Загальна картина спектра при обертанні багатоатомних молекул значно складніша. Це випливає хоча б з того, що в даному випадку обертання може проходити навколо трьох осей («а–а»; «b–b»; «c–c»), причому відповідні моменти інерції Іа, Іb, та Іс є різними. В залежності від співвідношення між вказаними моментами інерції будь-яку багатоатомну молекулу відносять до одного з трьох типів ротаторів:

а) сферичний – Іа = Іb = Іс;

б) симетричний – Іа ¹ Іb = Іса < Іb = Іс – витягнутий;

Іа = Іb < Іс – сплющений);

в) асиметричний – Іа ¹ Іb ¹ Іс.

У відповідності з такою класифікацією розглянутий вище жорсткий ротатор відноситься до типу симетричних ротаторів (Іb = Іс; Іа = 0).

Обертові рівні молекул типу сферичного ротатора

Обертові спектри багатоатомних молекул типу сферичного ротатора є найпростішим випадком. Для таких молекул всі три моменти інерції рівні між собою. Енергію обертання такої молекули можна записати:

Еоберт =

,

де

,
,
– складові механічного моменту кількості руху по осях а, b, с;

Іа, Іb, Іс – відповідні моменти інерції навколо цих осей.

Для сферичного ротатора Іа = Іb = Іс = І, тоді

Еоб =

.

Вираз для енергії обертання сферичного ротатора аналогічний до такого для лінійної молекули. Виходячи з квантової теорії

Еобj =

.

Тоді схема енергетичних рівнів для сферичного ротатора аналогічна до таких для лінійних молекул.

Різниця між цими рівнями буде у степені їх виродження, яка зв’язана, як відомо, з числом ступенів волі. Обертання лінійної молекули характеризується двома ступенями волі (j, mj), а обертання молекули типу сферичного ротатора характеризується трьома ступенями волі, а це задається трьома квантовими числами. Третім квантовим числом, крім j, mj є k, яке визначає проекцію обертового моменту кількості руху на одну з рухомих осей. Напрямок цієї осі вибирається довільно, але ця вісь обов’язково обертається разом з молекулою. Проекція обертового моменту кількості руху на цю вісь вибирає квантове число k.

Молекули типу сферичної дзиги внаслідок високої симетрії не мають дипольного моменту і тому не можуть мати чисті спектри обертання, як поглинання, так і випромінювання.

Моменти інерції і обертові постійні молекул типу симетричного ротатору. Симетричні ротатори характеризуються двома рівними моментами інерції. Будемо позначати через а і с осі, які відповідають найменшому і найбільшому моменту інерції молекули, а через b – вісь, якій відповідає проміжковий або середній момент інерції. Тоді одержимо: Іа £ Іb £ Іс. Для симетричного ротатора можливі два випадки – витягнута дзига з виділеною віссю а і сплюснута дзига з виділеною віссю с. Для витягнутої дзиги Іа < Іb = Іс; для сплюснутої – Іа = Іb < Іс. Таким чином, виділеною віссю (тобто віссю z) є вісь а найменшого моменту інерції для витягнутого ротатора і вісь с найбільшого моменту інерції для сплюснутого ротатора (мал.).

Трьом моментам інерції Іа, Іb, Іс відповідають три обертові постійні, які позначаємо А, В, С:

А =

; B =
; C =
.

Для обертових постійних симетричного ротатора: витягнутого – А > B = С, сплюснутого – А = В > С.

Обертова енергія симетричного ротатора задається двома квантовими числами j і k. k – проекція повного обертового моменту кількості руху молекули на рухому вісь і набуває значення від – j до +j (2j + 1). Тоді: j = 0, 1, 2, 3…; k = 0, ±1, ±2….

Степінь виродження енергетичних рівнів симетричного ротатора qj, k = 2 (2j + 1), тоді заселеність енергетичних рівнів:

.

Правила відбору (дозволені переходи між комбінуючими енергетичними рівнями) Δj = ±1; Δk = 0.

Система енергетичних рівнів симетричного ротатора визначається двома квантовими числами. Схема розміщення цих рівнів для витягнутого і сплющеного ротатора приведена на мал.

Якщо врахувати центробіжні сили між ядрами, то для

Еjk = 2Bj (j + 1) – 4Dj (j +1)3 – 2Djk(j + 1) k2.

Спектри обертання молекул типу асиметричного ротатора

Для молекул типу асиметричного ротатора всі три моменти інерції різні: Іа < Іb < Іс і відповідно A > B > C. Характер асиметрії може бути виражений через параметр асиметрії Х =

.

Для витягнутої дзиги: А > B = C, тобто В = С: Х =

. Для сплющеної дзиги: А = В > C: Х =
. Найбільшою асиметрією володіють молекули з Х= 0, при цьому В =
, тобто обертове постійне В є середньою між А і С. Енергетичні рівні асиметричної дзиги описуються рівнями:

,

– функція параметра асиметрії Х.

Для кожного j існує 2j + 1 значення функції

, що задаються числом τ, яке набуває двох значень: – j до +j. Правила відбору: Δj = 0, ±1. Дотримується правило неперетинання ліній підрівнів з одинаковим числом j.

Для симетричних дзиг спостерігається двократне виродження по квантовому числу k. Для кожного j підрівнів 2j + 1. Перше число в індексі енергетичного рівня показує квантове число витягнутої дзиги, а друге – сплющеної. Наприклад, 202 – j = 2; k–1 = 0; k+1 = 2. Індекси –1 і +1 є параметрами Х. Повне:

; τ = k–1 – k+1.

Коливання молекул. Коливні спектри. Коливні спектри молекул вивчаються методами інфрачервоної спектроскопії. Ці спектри зв’язані з переходами між коливними енергетичними станами або з класичної точки зору з коливанням атомних ядер відносно рівноважних положень. Число і частоти смуг залежать від числа атомів, що входять до складу молекули, від мас ядер, від геометрії і симетрії молекул і від потенціального поля внутрімолекулярних сил. Інтенсивність спектра визначається дипольним моментом і поляризуємістю. По коливним спектрам спектрам проводять структурні дослідження, визначають симетрію молекули та наявність тих чи інших функціональних груп.

Коливні спектри молекул. Коливні спектри можна вивчати для речовин в будь-якому агрегатному стані – твердому, рідкому чи газоподібному. При розгляді коливного руху молекул в спектроскопії широко використовується поняття про криві потенціальної енергії – u(r). Слід підкреслити, що для коливного руху ядер роль потенціальної енергії відіграє повна (тобто потенціальна і кінетична) енергія електронів. При зміщенні ядер положення рівноваги сили хімічного зв’язку намагаються вернути їх у вихідне положення. Оскільки хімічний зв’язок визначається рухом електронів, то природно, що сила, яка повертає ядро у вихідне положення виникає за рахунок зміни повної енергії електронів, яка обумовлюється зміною взаємного положення ядер, для яких в свою чергу вказана енергія має зміст потенціальної енергії u(r).

Для розгляду коливного руху необхідно ввести коливні координати, які описують відносне зміщення ядер. Поступовий рух молекул описується трьома координатами, що характеризують положення центра ваги, обертовий рух молекул у загальному випадку – трьома, а для лінійних молекул двома координатами. Це можуть бути кути Ейлера, що описують орієнтацію молекули відносно зовнішньої системи координат з початком в центрі ваги молекули.