Смекни!
smekni.com

Альтернативная энергетика (стр. 3 из 4)

Решение экологических глобальных проблем.

Применение возобновляемой энергии природного электричества и магнетизма в нуждах космонавтики и энергетики существенно улучшит глобальную экологию планеты и снизит ее влияние от космонавтики и планетарной энергетики в целом, поскольку тогда не надо будет осуществлять частые запуски ракетоносителей и сжигать сырье и топлива на планете.

Дешевая и быстродействующая всемирная космическая связь.

Бестопливная орбитальная космонавтика позволяет резко удешевить и повысить быстродействие всех систем космической связи и телекоммуникаций.

Управление погодой и многими природными планетарными явлениями.

Устранение и снижение мощности многих планетарных стихийных явлений.

Благодаря полезному использованию мизерной части непрерывно возобновляемой от Солнца энергии природных источников электроэнергии околоземного пространства становится возможным и перспективным создание новой экологически чистой бестопливной энергетики и бестопливной орбитальной космонавтики. В результате экология планеты существенно улучшится. На основе такой космической энергетики и бестопливной космонавтики произойдет революция во всех системах передачи информации. Они станут полностью беспроводными и дешевыми в эксплуатации. А именно, произойдет резкое удешевление и увеличение их быстродействия и пропускной способности, поскольку сейчас именно телефонные линии связи тормозят прогресс в системах связи. Бестопливная космическая энергетика позволит предотвращать многие природные аномальные и стихийные явления и катаклизмы. Таким образом, новая космическая энергетика и бестопливная космонавтика открывают новые горизонты прогресса человечества.

Водородная энергетика и сероводородная энергетика

— направление выработки и потребления энергии человечеством, основанное на использовании водорода в качестве средства для аккумулирования, транспортировки и потребления энергии людьми, транспортной инфраструктурой и различными производственными направлениями. Водород выбран как наиболее распространенный элемент на поверхности земли и в космосе, теплота сгорания водорода наиболее высока, а продуктом сгорания в кислороде является вода (которая вновь вводится в оборот водородной энергетики).

Производство водорода

В настоящее время существует множество методов промышленного производства водорода. Все цены приведены для США, 2004 год.

Паровая конверсия природного газа / метана

В настоящее время данным способом производится примерно половина всего водорода. Водяной пар при температуре 700—1000 °С смешивается с метаном под давлением в присутствии катализатора. Себестоимость процесса $2-5 за килограмм водорода. В будущем возможно снижение цены до $2-2,50, включая доставку и хранение.

Газификация угля.

Старейший способ получения водорода. Уголь нагревают с водяным паром при температуре 800—1300 °С без доступа воздуха. Первый газогенератор был построен в Великобритании в 40-х годах XIX века. Электричество будут вырабатывать топливные элементы, используя в качестве горючего водород, получающийся в процессе газификации угля.

В декабре 2007 года была определена площадка для строительства первой пилотной электростанции проекта FutureGen. В Иллинойсе будет построена электростанция мощностью 275 МВт. Общая стоимость проекта $1,2 млрд. На электростанции будет улавливаться и храниться до 90 % СО2.

Из атомной энергии

Использование атомной энергии для производства водорода возможно в различных процессах: химических, электролиз воды, высокотемпературный электролиз.

Себестоимость процесса $2,33 за килограмм водорода. Ведутся работы по созданию атомных электростанций следующего поколения. Исследовательская лаборатория INEEL (Idaho National Engineering Environmental Laboratory) (США) прогнозирует, что один энергоблок атомной электростанции следующего поколения будет производить ежедневно водород, эквивалентный 750 тыс. литров бензина.

Электролиз воды

H2O+энергия = 2H2+O2

Обратная реакция происходит в топливном элементе. Себестоимость процесса $6-7 за килограмм водорода при использовании электричества из промышленной сети

В будущем возможно снижение до $4 за килограмм.

$7-11 за килограмм водорода при использовании электричества, получаемого от ветрогенераторов.

В будущем возможно снижение до $3 за килограмм.

$10-30 за килограмм водорода при использовании солнечной энергии. В будущем возможно снижение до $3-4 за килограмм.

Водород из биомассы.

Водород из биомассы получается термохимическим или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500—800 °С (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H2, CO и CH4.

Себестоимость процесса $5-7 за килограмм водорода. В будущем возможно снижение до $1,0—3,0.

В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.

Снижение цены водорода возможно при строительстве инфраструктуры по доставке и хранению водорода. После небольших изменений водород может передаваться по существующим газопроводам природного газа.

Водород в настоящее время, в основном, применяется в технологических процессах производства бензина и для производства аммиака. США ежегодно производят около 11 миллионов тонн водорода, что достаточно для годового потребления примерно 35—40 миллионов автомобилей.

Департамент Энергетики США (DoE) прогнозирует, что стоимость водорода сравняется со стоимостью бензина к 2015 году.

Биотопливо

— это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, солома) и газообразное (биогаз, водород).

Биодизель — топливо на основе жиров животного, растительного и микробного происхождения, а также продуктов их этерификации.

Для получения биодизельного топлива используются растительные или животные жиры. Сырьём могут быть рапсовое, соевое, пальмовое, кокосовое масло, или любого другого масла-сырца, а также отходы пищевой промышленности. Разрабатываются технологии производства биодизеля из водорослей.

Биогаз — продукт сбраживания органических отходов (биомассы), представляющий смесь метана и углекислого газа. Разложение биомассы происходит под воздействием бактерий класса метаногенов.

Биоводород — водород, полученный из биомассы термохимическим, биохимическим или другим способом, например водорослями.

Экономический эффект

По оценкам Merrill Lynch прекращение производства биотоплив приведёт к росту цен на нефть и бензин на 15%.

Распределенное производство энергии

(англ. Distributed power generation) — концепция распределенных энергетических ресурсов подразумевает наличие множества потребителей, которые производят тепловую и электрическую энергию для собственных нужд, направляя их излишки в общую сеть.

В настоящее время промышленно развитые страны производят основную часть электроэнергии централизованно, на больших энергостанциях, таких как угольные электростанции, атомные электростанции, гидроэлектростанции или электростанции на природном газе. Такие электростанции имеют превосходные экономические показатели, но обычно передают электроэнергию на большие расстояния. Строительство большинства из них было обусловлено множеством экономических, экологических, географических и геологических факторов, а также требованиями безопасности и охраны окружающей среды. Например, угольные станции строятся вдали от городов для предотвращения сильного загрязнения воздуха, влияющего на жителей. Некоторые из них строятся вблизи угольных месторождений для минимизации стоимости транспортировки угля. Гидроэлектростанции должны находится в местах с достаточным энергосодержанием (перепад уровней на расход воды). Большинство энергостанций слишком далеко расположены, чтобы использовать их побочное тепло для обогрева зданий. Низкое загрязнение окружающей среды — критическое преимущество комбинированных энергостанций, работающих на природном газе. Это позволяет им находиться достаточно близко к городу для централизованного теплоснабжения и охлаждения. Другой подход — распределенное производство электроэнергии. При этом снижаются потери электроэнергии при транспортировке из-за максимального приближения электрогенераторов к потребителям электричества, вплоть до расположения их в одном здании. Такой подход также ведет к уменьшению числа и протяженности линий электропередач, которые необходимо построить. Типичное распределенное производство электроэнергии характеризуется низкими затратами на обслуживание, низким загрязнением окружающей среды и высокой эффективностью. Объединение распределенных генераторов энергии может выступать в качестве виртуальной ТЭЦ. В качестве синонима может использоваться термин "децентрализованное производство энергии", который не отражает специфической особенности — наличие общей сети обмена электро- и тепловой энергии. В рамках концепции децентрализованного производства электроэнергии возможно наличие общей сети электроэнергии и системы местных котельных, производящих исключительно тепловую энергию для нужд населенного пункта/предприятия/квартала.