Смекни!
smekni.com

Квантово-механічна теорія будови речовини (стр. 6 из 8)

Енергія зв’язку дорівнює енергії розриву, але протилежна за знаком. Якщо склад багатоатомної молекули виражається формулою АВn, то

Езв’язку =

Еутворення молекули з атомів

Наприклад:

= 397 ккал/моль; Е(С–Н) =

= 99 ккал

Але якщо допустити, що проходить процес послідовного відриву атома В від молекули АВn, то при такій дисоціації проходить зміна ядерної і електронної конфігурації системи і як наслідок – зміна енергії взаємодії атомів, що входять у молекулу. Якщо в СН4 валентний кут дорівнює 109,5°, то в СН3 – 120°, майже плоский. Тому енергія послідовного відриву кожного з атомів в В в молекулі АВn буде неодинакова. Тут можливі різні випадки. Якщо відрив одного атома приводить до послаблення інших зв’язків, тоді енергія послідовного відриву зменшується. Наприклад, у Н2О відрив 1-го атому Н: Е = 118 ккал/моль і другого – 102 ккал/моль2. Якщо відрив одного атома приводить до зміцнення хімічних зв’язків, то енергія відриву наступних атомів зростає. Наприклад, в AlCl3 – E1 = 911; Е2 = 95; Е3 = 119 ккал/моль. Для СН4: Е = 102, 88, 124, 80;

Есер. =

= 99 ккал/моль

Енергія утворення молекули може бути вирахована також як сума енергій хімічних зв’язків:

С5Н123С–СН2–СН2–СН2–СН3)

= 4ЕС–С + 12ЕС–Н

Закономірна зміна енергії в однотипних зв’язках дозволяє оцінити енергію зв’язку і в аналогічних молекулах.

Для багатоелектронних структур, як і для багатоелектронних атомів, точний розв’язок рівняння Шредінгера не знайдено і у зв’язку з цим використовується наближений розв’язок.

Наближений розв’язок рівняння Шредінгера на прикладі утворення молекули Н2 вперше виконано в роботі В. Гейтлера і Ф. Лондона в 1927 р. Гейтлер і Лондон при побудові хвильової функції електронів молекули водню виходили з хвильової функції атома водню в 1s-стані. Якщо два атоми водню a і b знаходяться на віддалі, при якій вони один на одного не впливають (тобто стан одного атома не залежить від стану другого), хвильові функції обох атомів виражаються добутком функцій, що описують кожен атом:

y = yа(1) · yb(2); y = yb(1) · ya (2)

Обидва вирази рівнозначні, так як електрони атомів зліченні, їх не можна розрізнити.

При зближенні атомів a і b на такі віддалі, коли вони впливають один на одного, виникають сили притягання між ядром відштовхуванням. Крива залежності енергії системи проходить через мінімум при r0 = 0,074 нм, що відповідає рівновеликій довжині зв’язку у молекулі Н2.

Якщо в атомі спіни паралельні (антисиметрична y-функція), зближення атомів приводить до зростання енергії системи (мал. , крива 2):

Е =

де І – кутовий інтеграл характеризує електростатичну взаємодію електронів і ядер між собою;

K– обмінний інтеграл визначає зменшення енергії системи, що обумовлена рухом кожного електрона біля обох ядер;

S – інтеграл перекривання; показує наскільки сильно перекриваються електронні орбіталі атомів водню.

Утворені молекули водню крім зміни енергії супроводжуються зміною електронної густини.

Якщо електронні хмари двох атомів водню не перекриваються, то довжина зв’язку рівна ra(H) = 0,53, r0 = 0,53 · 2 = 1,06 Å. У молекулі Н2 r0 = 0,74 Å. Це свідчить про те, що при утворенні ковалентного зв’язку відбувається перекривання електронних хмар атомів водню:


Для систем з двома і більшим числом електронів застосовують наближені методи обчислення хвильової функції, або наближено визначають розподіл електронної густини в молекулі. Найбільш поширеними є два методи: метод валентних зв’язків (ВЗ) і метод молекулярних орбіталей (МО). У розвитку першого методу особлива заслуга належить В. Гейтлеру і Ф. Лондону, Дж. Слетеру і Л. Полінгу; у розвитку другого методу – Р. Маллікену і Ф. Гунду.

Метод валентних зв’язків виходить з положення, що кожна пара атомів у молекулі утримується разом за допомогою електронних пар, тобто хімічний зв’язок локалізований між двома атомами, він утворюється внаслідок перекривання атомних електронних хмар. У місці перекривання електронних хмар, тобто в просторі між атомами, електронна густина максимальна. Це означає, що імовірність перебування електронів у просторі між ядрами більша, ніж у інших місцях молекули завдяки цьому зростають сили притягання між позитивними ядрами і негативними зарядами електронів, що приводить до утворення молекули.

У методі молекулярних орбіталей молекула розглядається як єдине ціле, де кожний електрон рухається в полі інших електронів і ядер. Стан молекули описується сукупністю електронних молекулярних орбіталей.

Метод валентних зв’язків

а) Квантовомеханічна теорія валентності.

1. Стехіометрична валентність – число, яке показує скільки атомів водню може приєднати один атом певного елементу, або замістити їх у сполуках. Це поняття не дає чіткого розуміння природи валентності.

2. З погляду методу валентних зв’язків чисельне значення валентності відповідає числу ковалентних зв’язків, що утворює атом, або валентність атома елементу визначається числом неспарених електронів. Наприклад: атом N 1s22s22p3 – в основному стані атом азоту має три неспарені електрони, які можуть брати участь в утворенні ковалентних зв’язків.

Під час хімічних реакцій атоми можуть переходити у збуджений стан. При цьому двохелектронні хмари розпадаються на одноелектронні – електрони розпаровуються. Для того, щоб хімічний зв’язок, утворений розпарованими електронами, був стійкий, потрібно щоб енергія, затрачена на розпарування електронів, була меншою від енергії, яка виділяється при утворенні ковалентного зв’язку:

Збудження атомів N, O, F в межах другого квантового рівня не може привести до збільшення числа неспарених електронів. Збудження електронів в цих атомах пов’язане з їх переходом на наступний квантовий рівень і потребує значної енергії, яка не компенсується виділенням енергії завдяки утворенню додаткових хімічних зв’язків.

Атоми елементів ІІІ-го періоду у зовнішньому енергетичному рівні мають вакантний d-підрівень, на який при збудженні можуть переходити s- і p-електрони зовні синього рівня, при цьому у атомів збільшується число непарних електронів. Наприклад:

б

Механізм утворення ковалентного зв’язку

У методі валентних зв’язків розрізняють обмінний і донорно-акцепторний механізми утворення хімічного зв’язку.

1. Обмінний механізм – до нього належать випадки, коли в утворенні спільної електронної пари від кожного атома бере участь один електрон. Наприклад:

Особливістю утворення сполук за обмінним механізмом є насиченість, яка показує, що атом утворює не будь-яке, а обмежене число хімічних зв’язків.

2. Донорно-акцепторний механізм – ковалентні зв’язки виникають не внаслідок спарування електронів різних атомів, а за рахунок спареної електронної пари, яка є на зовнішньому енергетичному рівні певного атома:


Два електрони належать атому азоту і називаються неподільною електронною парою. Така пара електронів може брати участь в утворенні ковалентного зв’язку з іншими атомами, якщо останні мають на зовнішньому енергетичному рівні вільну орбіталь. У нашому випадку вільну 1s-орбіталь має іон водню Н+. Такий механізм утворення ковалентного зв’язку називається донорно-акцепторним. Атом з неподільною електронною парою донор, атом, який має вільну орбіталь – акцептор.

Отже, у загальному вигляді валентність елементу визначається числом хімічних зв’язків (сума числа непарних електронів і числа хімічних зв’язків утворених донорно-акцепторним механізмом).

Координаційні сполуки

Донорно-акцепторний механізм утворення ковалентного зв’язку має особливо велике значення при утворенні координаційних сполук, у яких акцептором найчастіше виступають іони металів (Zn2+, Ag+, Cu2+, Hg2+, Co3+, Te2+, Te3+ тощо) з вакантними орбіталями. Як акцептори можуть виступати також і неметали. Наприклад, бор у сполуці Н2[ВF4], кремній у Н2[SiF6]. Донорами – нейтральні молекули Н2О, NH3, негативно заряджені іони F, Cl, Br, I, CN, CO32–, SO32– тощо.

Наукова теорія, яка пояснювала будову і основні властивості координаційних сполук, сформульована швейцарським хіміком А. Вернером у 1883 р. За цією теорією переважна більшість координаційних сполук має внутрішню і зовнішню сферу. Наприклад, у сполуці K[Ag(CN)2], [Cu(NH3)4]SO4 – внутрішню сферу утворюють групи атомів [Ag(CN)2]; [Cu(NH3)4]2K, а зовнішню сферу – відповідно К+meSO42–. Заряд комплексного іона визначається алгебраїчною сумою зарядів його складових частин.