Смекни!
smekni.com

Оптические преобразователи сигнала (стр. 3 из 3)

Большинство прожекторов современных кинескопов строят по двухлинзовой оптической схеме. При этом фокусировка электронного луча осуществляется в двух зонах: в поле иммерсионного объектива и в поле главной фокусирующей линзы.

Иммерсионный объектив образуют: термокатод 1, модулятор 2 и ускоряющий электрод. Благодаря высокой разности потенциалов между катодом и ускоряющим электродом (Uу=500…800В) и малым расстоянием L между этими электродами в зоне иммерсионного объектива создается сильная напряженность электрического поля, конфигурация сечения эквивалентных поверхностей которого на рис.5,а обозначена штриховыми линиями. Эмитируемые с поверхности катода электроны попадают в поле иммерсионного объектива (рис. 5,а,б) и собираются в плоскость его фокуса в узкий пучок, сечение которого называется кроссовером.


Рис.5.Фокусировка электронного луча: а – выход электронов из прожектора; в – двухлинзовая оптическая система.

Диаметр кроссовера Кр оказывается значительно меньше диаметра той части катода, с которой электроны попадают в отверстие модулятора. После кроссовера пучок электронов снова расходится и попадает в фокусирующее поле главной фокусирующей линзы, которая переносит изображение кроссовера в плоскость экрана. При этом сечение пучка в плоскости экрана имеет размер кроссовера. Таким образом, использование двухлинзовой оптической системы (рис.5,б) позволяет сравнительно просто получить в плоскости экрана сечение луча с радиусом не более 0,5 мм при существенно большем радиусе эмитирующей поверхности катода.

Интенсивность свечения экрана кинескопа определяется плотностью луча, регулировку которой удобно осуществлять, изменяя потенциал управляющего электрода – модулятора.

5. Экран кинескопа

Для преобразования сигнала в световое изображение используется явление люминесценции, заключающиеся в способности атомов, молекул и ионов некоторых веществ испускать свет при переходе из состояния с повышенной энергией (возбужденное состояние) в состояние с меньшей энергией. Вещества, обладающие такой способностью, называются люминофорами.

Возбуждение атомов некоторых веществ может быть вызвано электрическим полем или током, при этом возникает электролюминесценция. Вещества, обладающие свойством электролюминесценции, называется электролюминофорами.

В телевидении используется катодолюминесценция – свечение, вызванное ударами быстролетящих электронов. Бомбардировка люминофора быстрыми электронами приводит его в возбужденное состояние, при котором электроны атомов люминофора оказываются переведенными на более высокие энергетические уровни внешних орбит. Возвращаясь с внешних орбит на прежние уровни, электроны излучают кванты света.

Люминофоры, применяемые для экранов кинескопов, представляют собой кристаллические вещества различного химического состава. Это могут быть окислы, силикаты, сульфиды и фосфаты цинка, кадмия, магния, кальция, активированные различными металлами. Активацией добиваются повышения эффективности и необходимого спектрального состава излучения. Электрооптические характеристики люминофорных экранов зависят от химического состава вещества люминофора, технологии его нанесения и условий возбуждения.

Важнейшими характеристиками экрана является цвет свечения, инерционность и световая отдача. Цвет свечения экрана определяется типом выбранного люминофора. Для экранов черно-белых кинескопов используется люминофор БМ-5, являющийся смесью сульфида цинка и сульфида кадмия: ZnS(AgZn) 47%; cdS: (Ag)53%. Спектральная характеристика излучения данной смеси имеет два максимума (рис. 6). Первый мах находится в области излучения, соответствующего ощущению синего цвета, а второй мах совпадает с кривой видности глаза (штриховая линия), что увеличивает светоотдачу экрана. Цвет свечения люминофора БМ-5 имеет голубоватый оттенок и соответствует цветовой температуре 9700 К.


Рис.6. Спектральная характеристика

Рис.7. Характеристика люминофора черно-белых кинескопов послесвечения люминофор

Одной из важнейших характеристик работы экрана кинескопа является его инерционность, определяющая длительности возгорания и послесвечения люминофора. Длительность возгорания люминофора tэ достаточно мала. Основным параметром инерционности люминофора является длительность послесвечения Тпс, в течение которой яркость экрана уменьшается до 0,01максимального значения после прекращения возбуждения люминофора (рис.7, сплошная кривая). Длительность послесвечения является существенным параметром при выборе люминофора для экранов электронно-лучевых приборов различного назначения.

Эффективность преобразования энергии электронов луча в световое излучение характеризуется светоотдачей экрана К, определяемой отношением силы света I, кд, излучаемой экраном к мощности Р, Вт, электронного луча. Светоотдача зависит от энергии электронов луча, типа люминофора, способов его нанесения и может изменится от десятых долей канделы на ватт до 15 кд/Вт.

Сила света, излучаемая экраном кинескопа, определяется эмпирической зависимостью n

I=Kiл (U2 –U0)


где К-светоотдача; i –ток луча; U2 –напряжение второго анода кинескопа; U0 –пороговое напряжение второго анода, при котором происходит возбуждение люминофора.

6. Применение оптических приборов

Идеальных оптических систем, которые давали бы абсолютно стигматические изображения, не существует. Многие оптические приборы предназначены для получения изображений предметов на экранах, на светочувствительных пленках или в глазу.

Для получения больших увеличений применяется микроскоп. Он позволяет различать отдельные детали объекта, которые для невооруженного глаза или при наблюдении с простой лупой сливаются в точку, т.е. микроскоп лучше, чем лупа, разрешает тонкую структуру объекта. Однако, осуществляя большое увеличение, мы можем повысить разрешающею способность микроскопа лишь до известного предела. Это связано с тем фактом, что наши представления свете, как о лучах уже оказывается слишком грубыми, становится необходимым учитывать волновые свойства света. Сказанное относится не только к микроскопу, но и к другим оптическим приборам.

В военных оптических приборах, предназначенных для наблюдений (бинокли, стереотрубы), расстояние между центрами объектов всегда значительно больше, чем расстояние между глазами, и удаленные предметы кажутся значительно более рельефными, чем при наблюдении без прибора. Наоборот, театральные бинокли предназначены для рассматривания сцены, реальная глубина которой мала где ощущение глубины создается искусственно, с помощью декораций.

Для облегчения рассматривания снимков применяется стереоскоп. Производя фотографирование местности двух точек, получают два снимка, рассматривая которые в стереоскопе можно ясно видеть рельеф местности. Большая острота стереоскопического зрения дает возможность применять стереоскоп для обнаружения подделок документов, денег и т.д.

Исключительное значение имеют зрительные трубы (телескопы) в астрономии. Современные телескопы имеют огромные размеры и представляют собой весьма сложные сооружения. При наблюдении используется той или иной прибор (лупа, микроскоп, зрительная труба), глаз не посредственно рассматривает не сам предмет, а его изображение в приборе. При больших потерях за счет поглощения и отражения света преломляющими поверхностями яркость изображения соответственно снижается.


Список используемой литературы

1. В.Е. Джакония, А.А. Гоголь, Н.А. Ерганжиев и др. Телевидение. М.: Радио и связь,1986.

2. Г.С. Ландсберг. Элементарный учебник физики. Государственное издательство физико-математической литературы. Москва 1958.

3. Б.М. Яворский, А.А. Детлав. Справочник по физике. Государственное издательство физико-математической литературы. Москва 1963.

4. Н.И. Кошкин, М.Г. Ширкевич. Справочник по элементарной физике. Издательство «наука» ф-м литература. Москва 1965.

5. З.М. Пруслин, М.А. Смирнова. Радиотехника и электроника. Издательство «Высшая школа», Москва 1970.