Смекни!
smekni.com

Разработка электропривода лифта для высотного здания (стр. 3 из 4)

В полученном уравнении только суммарная постоянная времени ТЯ + ТМ подлежит компенсации, так как постоянная времени ТТП не может быть скомпенсирована потому, что тиристорный преобразователь является дискретным звеном и его динамические свойства зависят только от свойств силовых вентилей, входящих в силовую схему. Поэтому Тm = ТЯ + ТМ.

Из полученного уравнения находим передаточную функцию регулятора:

WРЭ(Р) =

Полученная передаточная функция соответствует ПИ-регулятору.

Особенностью моделирования СУ ЭП типа ЭПУ1 (с регулятором ЭДС (РЭ) и управляющим органом (УО)) является необходимость ограничения допустимого значения тока якоря путем ограничения выходного сигнала регулятора ЭДС UВЫХ.Р, в дополнение к собственному ограничению регулятора, исходя из условия:

если ABS(IЯЦ) ³IДОП.ЯЦ , то UВЫХ.Р =

где wДВ – текущая скорость вращения электродвигателя;

IДОП..ЯЦ – допустимый ток якорной цепи с учетом перегрузочной способности электродвигателя.

При моделировании регулятора следует производить учет нелинейностей, возникающих при работе реальных операционных усилителей (ОУ), обусловленных ограничением уровня выходного сигнала уровнем напряжения питания (в общем случае UПИТ.ОУ = ±10 В). В связи с этим в программе следует задавать условия ограничения, соответствующие зоне изменения выходного сигнала ОУ, а при наличии в составе регулятора интегральной составляющей, при достижении выходным сигналом ОУ предельных значений, производится условное размыкание интегральной ветви регулятора. Для реверсивных регуляторов зона изменения выходного сигнала: +10.0 ...–10.0.

Для представления структурной схемы (рисунок 6.1) в удобном виде для описания на языке программирования необходимо произвести разбиение передаточных функций отдельных элементов на элементарные звенья, а также учесть влияние нелинейностей. При этом получим математическую модель, приведенную на рисунке 6.2.

Параметры математической модели:

А[1] = =

= = 0,003;

А[2] = =

= = 0,3;

А[3] = КП = 23.

А[4] = = = 100.

А[5] = = = 10,62;

А[6] = = = 14,7;

А[7] = СЕ = 3,269;

А[8] = СЕ = 3,269;

А[9] = = = 0,13;

А[10] = КОЭ = 0,04871;

А[11] = UЗ;

А[12] = IЯДОП = IЯН*l = 195,5*3 = 586,5;

А[13] = IЯДОПRЯЦ= 586,5*0,0941 = 55,18;

А[14] = КП = 23.

А[15] = МС;

А[16] = = = 0,04371.

Рассчитаем напряжение задания по формуле:

UЗАД = w*Се*КОЭ.

Для скорости w = 57,18 с-1:

UЗАД = 57,18*3,269*0,04871 = 9,1 В.

Для скорости w = 2,9463 с-1:

UЗАД = 2,9463*3,269*0,04871 = 0,469 В.

Моделирование производится по следующим режимам:

1) пуск на номинальную скорость (UЗАД = 9,1 В; МС = 907,47 Н*м);

2) торможение до пониженной скорости (UЗАД = 0,469 В; МС = 907,47 Н*м);

3) торможение до 0 (UЗАД = 0 В; МС = 907,47 Н*м);

4) пуск на номинальную скорость (UЗАД = - 9,1 В; МС = 655,84 Н*м);

5) торможение до пониженной скорости (UЗАД = - 0,469 В; МС = 655,84 Н*м);

6) торможение до 0 (UЗАД = 0 В; МС = 655,84 Н*м).

Графики переходных процессов и таблицы результатов находятся в приложении.

Анализируя графики переходных процессов делаем вывод, что спроектированный электропривод обеспечивает динамические режимы спуска-подъема с соблюдением допустимого ускорения. Процесс торможения до 0 имеет затянутый характер, что незначительно влияет на весь цикл работы лифта в целом.


7 Проверка правильности расчета мощности и окончательный выбор двигателя

Для проверки электродвигателя по нагреву воспользуемся формулой для определения эквивалентного тока за цикл подъема-спуска:

IЭКВ = Ö.

IЭКВ = Ö

= 266,54 А.

Определим продолжительность включения двигателя:

ПВР = *100% = 24,5%.

Произведем перерасчет на стандартное значение ПВСТ = 100%:

IЭКВ(ПВСТ) = IЭКВ*Ö.

IЭКВ(100%) = 266.54*Ö = 132.159 А.

Как видно из полученного значения, электродвигатель проходит по нагреву, так как:

IН.ДВ > IЭКВ(100%).

195,5 А > 132,159 А.

Имеющийся запас по мощности необходим для обеспечения динамических режимов, так как система имеет значительный момент инерции.


8 Разработка схемы электрической принципиальной

8.1 Разработка схемы силовых цепей, цепей управления и защиты

Подачу питающего напряжения силовой сети целесообразно производить через автоматический выключатель, имеющий соответствующие параметры и предусматривающий защиту от токов короткого замыкания и токов перегрузки.

Непосредственное подключение входных цепей силового преобразователя к питающей сети необходимо выполнять с применением магнитного пускателя, в функции которого входит также и подключение к питающей сети релейной системы управления.

Промежуточная коммутация не силовых цепей должна производиться при помощи малогабаритных промежуточных реле.

Управление вызовом лифта с каждого этажа, а также управление работой лифта из кабины производится при помощи кнопок управления, расположенных на пультах управления каждого этажа и кабины.

Для получения информации о прохождении кабиной лифта каждого этажа необходимо применение этажных переключателей, имеющих три независимых положения (2 – замыкающихся и 1 нейтральное).

Ограничение хода кабины и подача команды на торможение должны производиться при помощи путевых выключателей, установленных на каждом этаже в соответствующих местах.

Сигнализация вызова лифта должна производиться при помощи сигнальных ламп, расположенных на пультах управления каждого этажа и на пульте управления в кабине.


8.2 Выбор элементов схемы

8.2.1 Выбор магнитного пускателя и промежуточных реле производим по следующим параметрам 7:

1) по номинальному напряжению контактов:

UН.КОН³UНАГР;

2) по номинальному току контактов:

IН.КОН³IНАГР;

3) по количеству контактов;

4) по напряжению питания катушки:

UН.КАТ = UПС;

5) по числу включений в час;

6) по времени включения и отключения.

Магнитный пускатель КМ1 предназначен для подключения к питающей сети электропривода.

UНАГР = 380 В.

IНАГР = 195,5 А.

UПС = 220 В.

По полученным параметрам выбираем магнитный пускатель типа ПМЛ-711СО4.

Выбор промежуточных реле производим на примере К1, предназначенного для управления блоком первого этажа.

UНАГР = 220 В.

IНАГР = 0,2 А.

UПС = 220 В.

Необходимое количество контактов:

1) замыкающих – 3;

2) размыкающих – 1.

По полученным параметрам выбираем реле типа РП 21. Выбор остальных реле производится аналогично.

8.2.2 Выбор кнопок управления, тумблера, этажных переключателей и путевых выключателей производится по следующим параметрам /7/:

1) по номинальному напряжению контактов:

UН.КОН³UНАГР;

2) по номинальному току контактов:

IН.КОН³IНАГР;

3) по количеству контактов;

4) по исполнению толкателя;

5) по точности включения.

Выбор кнопки управления произведем на примере кнопки SB3, предназначенной для включения промежуточного реле К1.

IНАГР = ,

Где PК1 – мощность удержания катушки промежуточного реле К1.

IНАГР = = 0,015 А.

UНАГР = 220 В.

Требуемое количество контактов:

1) замыкающих – 1;

2) размыкающих – 1.

По полученным величинам производим выбор кнопки типа КЕ011 исп. 21. Выбор остальных кнопок производится аналогично.

Тумблер предназначен для выбора режима ревизии при профилактическом осмотре лифта.

IНАГР = IВХ.СБ.

Где IВХ.СБ – ток входных цепей задания силового блока электропривода.

IНАГР = 0,03 А.

UНАГР = 15 В.

Количество требуемых контактов: переключающий – 1.

По полученным параметрам выбираем тумблер типа ТВ1-2.

Выбор этажных переключателей производим на примере SА1, предназначенного для установки на первом этаже.

IНАГР =

Где PК4 – мощность удержания катушки реле К4.

IНАГР = = 0,015 А.

UНАГР = 220 В.

Требуемое количество контактов: переключающийся с нейтральным положением – 1.

По полученным параметрам выбираем этажный переключатель типа ВКТ-12. Выбор остальных этажных переключателей производится аналогично.

Выбор путевых выключателей производим на примере SQ1, предназначенного для ограничения хода кабины лифта на первом этаже.

IНАГР =,

Где PКМ7 – мощность удержания катушки магнитного пускателя КМ7.

IНАГР = = 0,015 А.

UНАГР = 220 В.

Требуемое количество контактов: размыкающийся – 1.

По полученным параметрам выбираем путевой выключатель типа ВК-200. Выбор остальных конечных выключателей производится аналогично.

8.2.3 Выбор сигнальных ламп производим на примере HL1, предназначенной для установки на пульте лифта для сигнализации выбора этажа по следующим параметрам /7/:

1) по мощности;

2) по виду арматуры.

В качестве светосигнальных ламп выбираем тип АС120154У2, 12Вт, 220В. Выбор остальных светосигнальных ламп производится аналогично.


8.2.4 Выбор автоматического выключателя QF1 производится по следующим параметрам /7/:

1) по напряжению сети:

UН³UС;

2) по номинальному току нагрузки:

IН³IДЛИТ,

Где IДЛИТ – длительный расчетный ток линии;

3) по номинальному току теплового расцепителя:

IН.РАСЦ³IН.НАГР

Где IН.НАГР – номинальный ток нагрузки;

4) по току уставки электромагнитного расцепителя:

IУСТ = ,

Где IН – номинальный ток наибольшего количества одновременно работающих релейно-контакторных аппаратов, цепей сигнализации и других приемников электрической энергии;

IП.Д – пусковой электродвигателя;

К – коэффициент кратности, К = 12.

Определяем суммарный ток нагрузки:

IН.НАГР = + +

Где РКМ1 – мощность удержания магнитного пускателя;