Смекни!
smekni.com

Пузыри в жидкости (стр. 2 из 5)

Опыт по свободному всплыванию «маленького» пузырька в жидкости можно использовать для определения его размера, если известна вязкость жидкости.

Все наблюдали, что при сильном напоре воды в водопроводной системе, стакан наполняется молочно-белой водой, которая со временем просветляется. Мутность воды обусловлена огромным количеством взвешенных в ней газовых пузырьков, рассеивающих свет. А просветление воды наступает вследствие всплывания пузырьков, о чем убедительно свидетельствует появление именно у дна стакана расширяющегося просветленного слоя. Очень легко заметить, как со временем увеличивается ширина просветленного слоя. Располагая лишь часами и линейкой можно убедиться, что граница между мутной и прозрачной зоной движется с постоянной скоростью, и определить эту скорость.

Рисунок 2 Постепенное просветление стакана с газированной водой вследствие всплывания пузырьков

Этот опыт был проделан и найдено, что

м/c. Согласно Стоксу, с такой скоростью должен всплывать пузырек, радиус которого
м.

В совсем простом опыте со стаканом обычной воды, веря формуле Стокса, фактически измерили размер не видимого глазом пузырька. Ведь мы не видели отдельные пузырьки, а лишь наблюдали эффект рассеяния света множеством пузырьков и расширение у дна стакана прозрачного слоя воды, освободившегося от всплывших пузырьков.

Если захотим проверить, как формула Стокса согласуется с опытом, всякий раз наблюдая пузырек покрупнее, мы убедимся, что начиная с некоторых размеров сферических пузырьков формула Стокса начинает отказывать. Скажем, пузырек, радиус которого

м, должен по Стоксу всплывать со скоростью
м/с, а этого не происходит, он движется существенно медленнее.

Начиная с некоторой скорости всплывания могло бы оказаться, что при ламинарном обтекании жидкостью пузырька от его лобовой поверхности не будет успевать уводиться нужное количество жидкости. Тогда обязан объявиться иной характер движения жидкости, при котором быстрое перемещение пузырька станет возможным. Этот «иной характер» движения может оказаться следующим. От лобовой поверхности пузырька подгоняемая им жидкость перемещается быстро в направлении движущегося пузырька. В таком режиме движения жидкость в недостаточной степени затекает в «тыл» движущегося пузырька. И в его «тылу» могут возникнуть пустоты, разрывы, завихрения – все то, что в совокупности именуют «турбулентным» течением жидкости. На рис. 1 б) это изображено. В отличие от этого (рис. 1 а), на котором изображено ламинарное движение на рис. 1б линии искривляются, изображая вихри. Такому движению жидкости свойственна не упорядоченность вязкого течения, не взаимные соскальзывания соприкасающихся слоев жидкости, а образование завихрений в «тылу» движущегося пузырька. Упорядоченное вязкое течение сменяется вихревым, турбулентным.

Обсудим связь между выталкивающей силой

и скоростью всплывания пузырька
для случая, когда обнаружится второй турбулентный, характер движения жидкости у пузырька. Двигаясь со скоростью
и пройдя путь l, пузырек передаст массе жидкости
энергию

.

Эту энергию жидкость растратит на образование и движение завихрений. В конечном счете она превратится в тепло. Так как при равномерном движении


, то

.

Величину

мы знаем и, следовательно, легко получим приближенную формулу, определяющую
:

.

Последнюю формулу можно было бы получить, пользуясь соображениями о размерностях.

Вывод: при свободном всплывании пузырька в режиме ламинарного течения воды

, а в режиме турбулентного течения
. Это означает, что с ростом скорости всплывания при турбулентном течении сопротивление жидкости движению пузырька увеличивается быстрее, чем при ламинарном.

Итак, скорость, при которой ламинарное обтекание пузырька жидкостью сменится турбулентным, можно оценить, приравняв силы, тормозящие пузырек,

, и относящиеся к ламинарному и турбулентному течениям. Из такого сравнения следует, что если выполняется условие
, то пузырек всплывает в ламинарном режиме, а если
- турбулентном. Для воды
м2/с, а для воздуха
м2/с. Пузырьки, имеющие радиус
м, всплывают со скоростью
м/с, т.е.
м2/с, что существенно меньше, чем
м2/с. Такие водяные пузыри всплывают «ламинарно». А мыльные пузыри, радиус которых
м, падают со скоростью
м/с. Значение
м2/с существенно больше, чем
м2/с и, следовательно, такие мыльные пузыри падают в турбулентном режиме.

2. Модельный опыт о флотации

Этот опыт иллюстрирует физическое явление, на котором основан технологический процесс, именуемый флотацией. Газовые пузырьки в этом процессе играют важную роль.

Флотация, а точнее флотационное обогащение - это процесс разделения совокупности двух видов мелких твердых частиц, отличающихся смачиваемостью той жидкостью, в которой они находятся, чаще водой. На поверхности частиц, которые будут плохо смачиваться жидкостью, будут закрепляться газовые пузырьки. Говорят так: образуется флотационный агрегат – частица и прилипшие к ней пузырьки газа. Если средняя плотность такого агрегата

меньше плотности жидкости, он будет всплывать, вынося на поверхность жидкости частицы твердой фазы. Те же частицы, которые хорошо смачиваются жидкостью не будут на себе задерживать пузырьки газа, не сформируют флотационный агрегат, и, следовательно, осядут на дно. В этом процессе частицы первого и второго вида разделятся.

Принципиальная возможность разделения твердых частиц различных сортов с помощью всплывающих газовых пузырьков, широко используется для разделения частиц пустой породы в измельченной руде от частиц, богатых металлом. Именно поэтому явление флотации лежит в основе технологического процесса, используемого в горнорудных обогатительных фабриках.

К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце прошлого века американская учительница (Карри Эверсон), стирая загрязненные маслом мешки, в которых хранился раньше медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации.

Возникают следующие вопросы. Как образуются газовые пузырьки во флотационной ванне с жидкостью и частицами твердой породы? При каком соотношении объемов газовых пузырьков и твердых частиц образуемые ими флотационные агрегаты будут всплывать?

Введение газовых пузырьков в объем флотационной волны осуществляется многими различными приемами. Иногда просто продуют воздух через сетки с малыми отверстиями, иногда в объеме ванны проводят химическую реакцию, при которой возникает большое количество газа, например углекислого. Существует так называемая электрофлотация, при которой в ванне образуются газообразные водород и кислород при пропускании тока через воду. Все эти приемы дают возможность регулировать интенсивность процесса формирования газовых пузырьков.