Смекни!
smekni.com

Устройство и применение лазера (стр. 2 из 2)

Применение лазеров

лазер квантовый генератор излучение

С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё не известных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту (проигрыватели компакт-дисков, лазерные принтеры, считыватели штрих-кодов, лазерные указки и пр.). В промышленности лазеры используются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые невозможно сварить обычными способами (к примеру, керамику и металл). Луч лазера может быть сфокусирован в точку диаметром порядка микрона, что позволяет использовать его в микроэлектронике (так называемое лазерное скрайбирование). Лазеры используются для получения поверхностных покрытий материалов (лазерное легирование, лазерная наплавка, вакуумно-лазерное напыление) с целью повышения их износостойкости. Широкое применение получила также лазерная маркировка промышленных образцов и гравировка изделий из различных материалов. При лазерной обработке материалов на них не оказывается механическое воздействие, поэтому возникают лишь незначительные деформации. Кроме того весь технологический процесс может быть полностью автоматизирован. Лазерная обработка потому характеризуется высокой точностью и производительностью.

Полупроводниковый лазер, применяемый в узле генерации изображения принтера Hewlett-Packard.

Лазеры применяются в голографии для создания самих голограмм и получения гологафического объёмного изображения. Некоторые лазеры, например лазеры на красителях, способны генерировать монохроматический свет практически любой длины волны, при этом импульсы излучения могут достигать 10−16 с, а следовательно и огромных мощностей (так называемые гигантские импульсы). Эти свойства используются в спектроскопии, а также при изучении нелинейных оптических эффектов. С использованием лазера удалось измерить расстояние до Луны с точностью до нескольких сантиметров. Лазерная локация космических объектов уточнила значение астрономической постоянной и способствовала уточнению систем космической навигации, расширила представления о строении атмосферы и поверхности планет Солнечной системы. В астрономических телескопах, снабженных адаптивной оптической системой коррекции атмосферных искажений, лазер применяют для создания искусственных опорных звезд в верхних слоях атмосферы.

Сверхкороткие импульсы лазерного излучения используются в лазерной химии для запуска и анализа химических реакций. Здесь лазерное излучение позволяет обеспечить точную локализацию, дозированность, абсолютную стерильность и высокую скорость ввода энергии в систему. В настоящее время разрабатываются различные системы лазерного охлаждения, рассматриваются возможности осуществления с помощью лазеров управляемого термоядерного синтеза(самым подходящим лазером для исследований в области термоядерных реакций, был бы лазер, использующий длины волн, лежащие в голубой части видимого спектра). Лазеры используются и в военных целях, например, в качестве средств наведения и прицеливания. Рассматриваются варианты создания на основе мощных лазеров боевых систем защиты воздушного, морского и наземного базирования.

В медицине лазеры применяются как бескровные скальпели, используются при лечении офтальмологических заболеваний (катаракта, отслоение сетчатки, лазерная коррекция зрения и др.). Широкое применение получили также в косметологии (лазерная эпиляция, лечение сосудистых и пигментных дефектов кожи, лазерный пилинг, удаление татуировок и пигментных пятен). В настоящее время бурно развивается так называемая лазерная связь. Известно, что чем выше несущая частота канала связи, тем больше его пропускная способность. Поэтому радиосвязь стремится переходить на всё более короткие длины волн. Длина световой волны в среднем на шесть порядков меньше длины волны радиодиапазона, поэтому посредством лазерного излучения возможна передача гораздо большего объёма информации. Лазерная связь осуществляется как по открытым, так и по закрытым световодным структурам, например, по оптическому волокну. Свет за счёт явления полного внутреннего отражения может распространяться по нему на большие расстояния, практически не ослабевая.