Смекни!
smekni.com

Виды повреждений кабельных линий, краткая характеристика методов их обнаружения (стр. 5 из 7)

При волновом методе измерений выходное сопротивление высоковольтного источника не равно волновому сопротивлению линии, поэтому кроме отраженных волн от участка повреждения появляются отраженные от неоднородностей кабеля (муфт, ответвлений) и переотраженные от начала кабеля импульсные сигналы – синхронные помехи, значительно затрудняющие оценку импульсной характеристики кабеля.

При волновом методе расстояние до места повреждения определяется по временной задержке между приходом к началу кабеля импульсов напряжения или импульсов тока, отраженных от места повреждения. Импульсы напряжения по длительности занимают половину расстояния до места повреждения, а ударные импульсы тока также имеют достаточно большие длительности. Это приводит к следующим недостаткам по сравнению с методом импульсной рефлектометрии:

1. Сложность анализа полученных импульсных характеристик при измерениях волновым методом. (Вид этих характеристик зависит не только от характера повреждения и длины линии, но и от величины поданных импульсов, наличия или отсутствия пробоя в месте повреждения и т.д.)

2. Низкая разрешающая способность, то есть невозможность обнаруживать близко расположенные неоднородности. (Отражения от неоднородностей вообще трудно различимы на импульсной характеристике кабельной линии, а отражения от соседних неоднородностей вообще сливаются друг с другом)

3. По импульсной характеристике невозможно получить ориентировки, расстояние до которых известно (в виде отражений от муфт, кабельных вставок и т.д.)

4. Большая погрешность измерения. (Это обусловлено относительно большими длительностями фронтов и срезов волновых процессов, которые формируются самой линией и процессом пробоя)

5. Невозможность стабильного повторения волновых процессов, что может привести к появлению ошибок.

(Процесс пробоя является очень нестабильным, он в любой момент может прерваться и не повториться в том же виде. Это накладывает очень серьезные требования к быстродействию измерителя волновых процессов).

Таким образом, волновой метод по сравнению с методом импульсной рефлектометрии, с одной стороны, позволяет определять сложные (с большим сопротивлением) и неустойчивые (заплывающие) места повреждений кабельных линий, а с другой стороны, имеет существенные недостатки. В значительной степени совместить достоинства метода импульсной рефлектометрии и волнового метода позволяет метод кратковременной дуги.

повреждение кабельный определение линия

2.4 Метод измерения частичных разрядов

В последние годы все более широкое распространение в нашей стране и за рубежом находит мнение о необходимости замены испытаний кабельных линий повышенным напряжением постоянного тока, превышающем рабочее напряжение в 3…6 раз рабочее напряжение (Uраб) на диагностику изоляции с помощью измерения частичных разрядов (ЧР), токов утечки, абсорбционных токов и других методов с приложением напряжения (1…1,5) Uраб.

Дело в том, что проведение испытаний кабеля, находящегося в эксплуатации продолжительное время, повышенным напряжением отрицательно влияет на изоляцию и снижает срок эксплуатации.

В отличие от испытаний диагностика изоляции кабельной линии относится к неразрушающим методам контроля. Одним из прогрессивных методов диагностики является метод измерения ЧР, позволяющий не только определить уровень частичных разрядов в кабельной линии, но и определить их местонахождение по длине.

Частичный разряд – это электрический разряд, длительность которого составляет единицы-десятки наносекунд. Частичный разряд частично шунтирует изоляцию кабельной линии. Частичные разряды появляются в слабом месте кабельной линии под воздействием переменного напряжения и приводят к постепенному развитию дефекта и разрушению изоляции.

Амплитудно-фазовые диаграммы (АФД) сегодня являются одним из основных методов представления информации о характеристиках частичных разрядов (ЧР) в изоляции оборудования. АФД обеспечивают необходимую информацию как для идентификации типов дефектов изоляции так и для выделения сигналов ЧР из помех. Кроме того, использование метода АФД при хранении информации обеспечивает минимизацию объема запоминаемых данных, что важно при создании экспертных систем. Высокая эффективность метода АФД обусловлена учетом стохастических свойств ЧР и использованием усредненных характеристик сигналов ЧР в амплитудно-фазовом пространстве.

Существующая на сегодняшний день аппаратура для измерения сигналов ЧР, как правило, регистрирует параметры каждого импульса ЧР, что обуславливает ее избыточную сложность и стоимость. Применение метода АФД не только при анализе данных, но и при измерении сигналов ЧР позволяет снизить стоимость аппаратуры регистрации ЧР. При этом резко сокращается избыточность регистрируемых данных и достигается оптимальное соответствие требуемой точности измерений, стоимости аппаратуры, объема накапливаемой информации и времени измерения.

2.4.1Какие параметры импульсов ЧР нужно измерять

В зависимости от сложности и стоимости аппаратуры можно измерять различные параметры импульсов. Первое и основное разделение – измерять некий набор параметров каждого импульса (с последующей обработкой) или измерять некие усредненные характеристики импульсов, такие как средний ток, количество импульсов превышающих заданный порог и т.п. В первом случае мы увеличиваем сложность и стоимость аппаратуры – во втором теряем некоторую информацию (в частности, возможность отличить сигнал ЧР от помехи по форме импульса и др.). Общего однозначного решения этого вопроса, вероятно, не существует, однако на основании уже накопленного опыта можно предложить вариант оптимального на наш взгляд решения.

Сначала рассмотрим случай, когда мы регистрируем характеристики каждого импульса, т.е. располагаем максимальной информацией. В зависимости от сложности и стоимости аппаратуры можно регистрировать следующие индивидуальные характеристики импульса ЧР:

– форму каждого импульса и время его появления

– амплитуду, полярность, длительность и время появления

– амплитуду и время появления

– только амплитуду

Регистрация формы – самая полная но, увы, очень дорогая характеристика. При регистрации амплитуды импульса сразу встает вопрос – что называть амплитудой в случае, если импульс имеет колебательную форму (рис 3.2.24) – амплитуду первого пика или максимальное значение модуля сигнала? При такой форме импульса встает аналогичный вопрос по поводу полярности и длительности сигнала. Параметры сигналов ЧР, регламентированные в существующих нормативных документах, практически невозможно использовать при такой форме импульсов, особенно с учетом того, что интеграл импульса (заряд) может быть равен нулю.


Рис 2.24 Типичная форма сигнала ЧР

Для того чтобы не усложнять дальнейшее изложение, давайте сохраним термин амплитуда, понимая под ним некий параметр характеризующий величину сигнала. На наш взгляд наиболее удачными приближениями являются максимальная амплитуда или энергия (т.е. интеграл квадрата напряжения), но им может служить и заряд, и что-то еще – в общем, кому что нравится. Аналогичным образом поступим и с длительностью импульса и с его полярностью.

В результате многочисленных экспериментов пришли к выводу, что оптимальной с точки зрения соотношения стоимость – информативность является регистрация только двух параметров – «амплитуды» и времени прихода импульса.

2.4.2Хранение и представление информации

Будем считать, что для каждого пришедшего импульса измерительная аппаратура дает нам эти параметры. Адекватной формой хранения информации является таблица, в строчках которой записываются амплитуда и фаза (время появления) каждого зарегистрированного импульса. Из-за стохастической природы ЧР, для получения необходимой точности измерения (т.е. определения характеристик ЧР контролируемого объекта с необходимой точностью) требуется накопление информации за 500 – 5000 периодов питающего напряжения. С учетом наличия помех общее количество зарегистрированных за одно измерение сигналов достигает десятков и сотен тысяч. И если такая форма записи подходит для хранения данных (в виде файла), то для представления полученных данных она несколько неудобна. Рассмотрим другой способ представления полученных данных.

2.4.3Амплитудно-фазовые диаграммы (АФД)

Точечная форма АФД

Возьмем лист бумаги и отложим по горизонтальной оси фазу (от нуля до 360 градусов), а по вертикальной оси – амплитуду сигнала. Для каждого зарегистрированного сигнала у нас есть две характеристики – амплитуда и фаза. Будем рассматривать их как две координаты точки на плоскости листа. Каждый зарегистрированный сигнал будем отмечать точкой, поставленной в соответствии с измеренными значениями амплитуды и фазы импульса. После достаточно длительного измерения, мы получим картину похожую на приведенную на рис. 2 (реальные данные). Это и есть АФД с точечной формой представления данных.

Рис 2.25 Точечная амплитудно-фазовая диаграмма


Сравним этот способ запоминания и представления данных с таблицей, о которой говорилось выше. Если с точки зрения хранения данных не произошло каких-либо изменений (наш график с точки зрения компьютера это та же таблица), то форма представления данных стала гораздо удобнее (по крайней мере, на наш взгляд). Самое главное это то, что, получив возможность «одним взглядом» оценить сразу все полученные данные, мы не потеряли никакой информации. Каждый импульс зарегистрирован и может быть рассмотрен. По такой АФД мы можем определить все важнейшие характеристики сигналов ЧР, такие как фазовые распределения сигналов в заданном интервале амплитуд, амплитудные распределения импульсов в любом фазовом интервале, зависимость интенсивности сигналов от амплитуды (заряда) и т.д.