Смекни!
smekni.com

Исследование динамических свойств электропривода с вентильным двигателем (стр. 2 из 5)

Для уменьшения изменения выходной величины необходимо либо устранить автоколебания, либо увеличить частоту возможных автоколебаний. Последнее следует из того, что модуль частотной характеристики линейной части системы

обычно с ростом частоты стремится к нулю и, следовательно, чем выше будет частота автоколебаний, тем будет меньше изменение выходной величины [2].

В связи с этим важное значение приобретают способы увеличения частоты колебаний или, если это возможно, устранения этих колебаний.

Способы повышения частоты автоколебаний:

1. Уменьшение гистерезиса b реле. При этом прямая –b , параллельная оси абсцисс, приближается к действительной оси, точка пересечения частотной характеристики релейной автоматической системы

и прямой b смещается вверх. Увеличивается частота автоколебаний, уменьшается их амплитуда.

Недостаток: Невозможно получить частоты автоколебаний выше частоты

, получаемой при нулевой петле гистерезиса b = 0.

2. Введение отрицательного гистерезиса b. Изменяется направление переключений, прямая –b пройдет выше оси абсцисс, частоты автоколебаний увеличиваются

.

3. Изменение параметров линейной части системы.

3.1. Уменьшение электромеханической постоянной времени

.

3.2. Введение внутренней обратной связи.

Применяя соответствующие обратные связи, можно изменять параметры линейной части системы, а следовательно, и частоту возможных автоколебаний.

Линеаризация.

Релейный элемент является существенно нелинейным элементом. Выходная величина релейного элемента (управляющее воздействие) изменяется скачком, когда входная величина (управляющий сигнал) проходит пороговые значения. В интервале между моментами времени, соответствующими прохождению входной величиной пороговых значений, выходная величина релейного элемента неизменна.

Такие свойства релейного элемента позволяют сравнительно простыми средствами коммутировать большие мощности, но пропорциональность между выходной и входной величинами здесь отсутствует.

Если одновременно с управляющим сигналом на вход релейного элемента подавать дополнительное периодическое воздействие, то релейный элемент может при определенных условиях приобрести свойства пропорциональности. При этих условиях релейный элемент эквивалентен линейному усилителю. Характерной особенностью такого усилителя является зависимость коэффициента усиления от «амплитуды» внешнего воздействия А. Увеличение последней уменьшает коэффициент усиления. Если в релейной системе создать высокочастотные (по сравнению с внешним воздействием) колебания, то релейная система приобретает свойства линейной или пропорциональной системы, причем настройка этой последней системы может осуществляться за счет изменения «амплитуды» этих относительно высокочастотных колебаний. Роль фильтра в релейной системе будет играть ее линейная часть.

Дополнительное высокочастотное воздействие, осуществляющее линеаризацию релейной системы, может быть создано при помощи вынужденных колебаний или автоколебаний, если эти колебания существуют и устойчивы [2].

Процесс линеаризации аналогичен процессу модуляции. Релейный элемент представляет собой модулятор, дополнительное периодическое воздействие соответствует несущей частоте, а внешнее воздействие (управляющий сигнал) — модулирующему сигналу.

Более точно в релейном элементе при наличии дополнительного периодического воздействия происходит своеобразная широтно-импульсная модуляция. Отсюда вытекает соотношение между частотой модулирующего сигнала и несущей, при которой процесс модуляции будет осуществлен без существенных искажений. Отношение частоты несущей к частоте сигнала должно быть по крайней мере больше трех[2]. Это накладывает ограничения на скорость изменения управляющего сигнала.

Линеаризация автоколебаниями.

В качестве дополнительного периодического воздействия, производящего линеаризацию релейной системы, могут быть использованы автоколебания самой релейной системы, если частота их такова, что внешнее воздействие по сравнению с ними можно считать медленно изменяющимся.

Так как обычно частота автоколебаний относительно низка, то для осуществления линеаризации необходимо применять способы повышения этой частоты автоколебаний.

В таблице № 2 приведены некоторые передаточные функции ускоряющих элементов и их характеристики.


Таблица № 2.

Выражение годографа Вид годографа
1
2
3
4

Выделим из структурной схемы электропривода с синхронной машиной, включенной по схеме вентильного двигателя, контур тока (рис. 4.1).

Рис. 4.1

Передаточная функция линейной части системы

, причем степень числителя не больше степени знаменателя.

,
(4.0)

Выражение для частотной характеристики разомкнутой релейной системы без зоны нечувствительности имеет вид:

. (4.1)

Физический смысл выражения (4.1) состоит в том, что результирующая частотная характеристика представляется в виде суммы простейших характеристик, кратных нечетным частотам. Это вытекает из того, что выходной сигнал релейного элемента, имеющий прямоугольную форму, раскладывается в бесконечную сумму ряда Фурье с нечетными гармониками (рис. 4.2.).

Рис. 4.2

Нечетность прямоугольных колебаний относительно начала работы релейного элемента определяет нечетность гармоник.

- частотная характеристика релейной автоматической системы.

- частотная характеристика системы без ускоряющего элемента.

- частотная характеристика системы с ускоряющим элементом.

(4.2)

Характеристика релейной системы

может быть определена по частотной или временным характеристикам или в некоторых случаях по передаточной функции линейной части системы.

В дальнейших расчетах будем пользоваться последним методом.

Согласно [2], если передаточная функция такова, что можно найти её полюсы, то характеристика релейной системы

может быть определена через передаточную функцию (точнее через полюсы передаточной функции) не в виде ряда, а замкнутой форме.

При действительных отрицательных, не кратных и ненулевых полюсах передаточной функции

справедливо равенство:

, (4.3)

где

- полюсы передаточной функции линейной части системы.

- число полюсов передаточной функции линейной части.

Рис. 4.3

Запишем передаточную функцию линейной части системы без ускоряющего элемента: