Смекни!
smekni.com

Усталостная прочность материалов (стр. 2 из 2)

Кроме свойств материала, на усталостную прочность оказывают влияние следующие факторы: 1) наличие концентраторов напряжений; 2) масштабный фактор, то есть влияние абсолютных размеров детали (чем больше размеры детали, тем ниже усталостная прочность); 3) качество обработки поверхности (с уменьшением шероховатости поверхности детали растет усталостная прочность); 4) эксплуатационные факторы (температура, коррозия, частота нагружения, радиационное облучение и т.д.); 5) наличие поверхностного слоя, упрочненного различными технологическими методами.

напряжение усталость кривая прочность

3. Расчет на прочность при циклических напряжениях

Расчет на прочность при циклических напряжениях начинают с построения диаграммы усталостной прочности (часто, для простоты рассуждений предельную линию представляют в виде прямой) и показывают на ней рабочую точку М цикла в случае, если рассматриваемый элемент испытывает только простое растяжение и сжатие.

Рассмотрим все те циклы, рабочие точки которых лежат на одной прямой, и для которых справедливо выражение sà=sm∙tga. Тогда

.

Значит, можно сделать вывод о том, что все подобные циклы лежат на одной прямой. Тогда, под запасом усталостной прочности будем понимать отношение отрезка ON к отрезку OM:

, где точка M соответствует действующему циклу, а точка N получается вследствие пересечения предельной прямой и продолжения отрезка OM.

Для определения

(т.е. в ситуации, когда действуют лишь нормальные напряжения) в инженерной практике применяются как графический, так и аналитический способы. При графическом способе строго по масштабу строится диаграмма предельных напряжений в системе координат. Далее, на этой диаграмме наносится рабочая точка и определяется отношение величин отрезков ON и OM. Для определения расчетных зависимостей для
воспользуемся условием подобия треугольников OND и OMK и получим:

.

Полученный коэффициент запаса соответствует идеальному образцу. Реальная же его величина зависит, как отмечалось выше, от геометрии, размеров и состояния поверхности образца, учитываемых коэффициентами К1, соответственно. Для этого необходимо предел усталости при симметричном нагружении уменьшить в

раз, или, что тоже самое, амплитудное напряжение цикла увеличить в
раз. Тогда

,

где

.

Аналогичным образом могут быть получены соотношения усталостной прочности и при чистом сдвиге. Эксперименты показывают, что диаграмма усталостной прочности для сдвига заметно отличается от прямой линии, свойственной простому растяжению (сжатию), и имеет вид кривой. В первом приближении эту кривую в координатных осях a, m можно представить в виде двух наклонных, как это изображено на рисунке 9. Причем, если одна из них (ближняя к оси ординат) соответствует разрушению образца вследствие усталостных явлений, то другая  по причине наступления пластического состояния.

В данном случае расчетная формула для

записывается в виде

,

где

 эмпирическая величина, определенная на основе обработки экспериментальных данных.

При сложном напряженном состоянии, т.е. если в рабочей точке при действии внешних нагрузок одновременно возникают как нормальные, так и касательные напряжения, для вычисления nR применяется следующая приближенная формула:

,

где nR искомый коэффициент запаса усталостной прочности;

коэффициент запаса усталостной прочности в предположении, что касательные напряжения в рабочей точке отсутствуют;

 коэффициент запаса прочности по усталости при предположении, что в рабочей точке нормальные напряжения отсутствуют.

Резюмируя, заметим, что физические основы теории твердого деформируемого тела недостаточно развиты, многие предпосылки современной теории усталостной прочности базируются на эмпирической основе. Отсутствие твердых предпосылок в теории выносливости в современном виде лишает ее нужной строгости. Так как полученные эмпирические зависимости не являются универсальными, сами результаты расчетов являются достаточно приближенными. Однако указанные приближения оказываются допустимыми для решения инженерных задач.