Смекни!
smekni.com

Алгоритм Кеннета-Джексона для опису фазових перетворень у бінарних сплавах. Опис дифузії (стр. 3 из 5)

Тут

- кількість мічених атомів у площині
,

4 – кількість можливих напрямків скачків через площину х з даного вузла;

– імовірність мати вакансію у сусідньому вузлі;

– частота скачків вакансії;

1/12 – імовірність обміну вакансії з даним атомом (12 – кількість сусідніх вузлів);

f - кореляційний множник.

Розкладаючи

в ряд Тейлора і нехтуючи вищими порядками малості, маємо

,

де h=

- довжина елементарного скачка (відстань до найближчого сусіда) в ГЦК-решітці. Таким чином отримаємо закон дифузії (першого закону Фіка) з коефіцієнтом дифузії

фазовий дифузійний бінарний сплав


2.6 Взаємна дифузія. Ефект Кіркендаля

У 1947 році був проведений дослід, що показав існування зв’язку між дифузійними процесами та необоротною деформацією твердих тіл. Відпалювався зразок розчину цинку в решітці міді. На границях мідь-α-латунь з обох боків дифузійною зваркою були зафіксовані інертні маркери – дротинки з тугоплавкого матеріалу (молібден, вольфрам), дифузійною взаємодією яких з міддю і цинком при температурі відпалювання знехтували. При відпалюванні, крім взаємопроникнення матеріалів та згладжуванням концентраційних профілів, був помічений зсув маркерів в бік α-латуні за параболічним законом

. Тут потрібно врахувати:

1) імовірність обміну вакансії з атомами різного сорту різна, тому компоненти сплаву мають різну рухливість (парціальний коефіцієнт дифузії);

2) різна рухливість компонентів приводить до виникнення потоку вакансій в бік більш рухливого компоненту з наступним розбиранням вакансіями атомних площин і відповідним зсувом решітки.

У системі відліку, пов’язаній з кристалічною решіткою

У лабораторній системі відліку потоки повинні бути рівними за величиною та протилежні за напрямком

Звідси швидкість течії решітки

Таким чином, швидкість течії решітки визначається різницею рухливостей компонентів та градієнтом концентрації, а потоки в лабораторній системі відліку мають вигляд першого закону Фіка з коефіцієнтом дифузії

, хоча, насправді взаємна дифузія є результатом накладання течії решітки на дифузійну міграцію.

РОЗДІЛ 3. АЛГОРИТМ КЕННЕТА-ДЖЕКСОНА ДЛЯ ОПИСУ ФАЗОВИХ ПЕРЕТВОРЕНЬ У БІНАРНИХ СПЛАВАХ

3.1 Модель

Розглядається система бінарного сплаву А+В в наближеній моделі регулярних розчинів, тобто:

а) взаємодія атомів розраховується в наближенні першої координаційної сфери;

б) взаємодія між атомами описується потенціалами парної взаємодії (φAA, φAB, і φBB), які не залежать від концентрації та температури;

в) ентропія регулярного розчину вважається тільки конфігураційною, тобто описується лише той хаос, що пов’язаний з розміщенням атомів різного сорту по вузлах решітки, і не враховується хаос, пов’язаний з коливаннями атомів (вібраційна ентропія).

Прагнення термодинамічних систем до встановлення рівноваги за складом кількісно характеризується величиною, яка називається хімічним потенціалом. Хімічні потенціали компонентів сплаву обчислюються за допомогою вільної енергії Гібса (потенціалу Гібса), яку можна розуміти як повну хімічну енергію системи. Хімічні потенціали зумовлюють підтримання потоків речовини (дифузійних потоків), які обчислюються за допомогою активностей. Активність компонентів розчину – це ефективна концентрація компонентів з врахуванням різних взаємодій між ними в розчині, тобто з врахуванням відхилення поведінки системи від моделі ідеального розчину. Різницеві рівняння дифузійних потоків описують процес дифузії. Через те, що дифузійні потоки залежать від хімічних потенціалів сусідніх вузлів, які в свою чергу залежать від атомів сусідніх до них, ми практично отримуємо різницеві рівняння четвертого порядку. Для температур та концентрацій які сильно відрізняються від двофазної області ці рівняння перетворюються на стандартні рівняння дифузії.

3.2 Вільна енергія Гіббса для твердого розчину

Ми припустили, що враховується взаємодія атомів лише з першої координаційної сфери, і взаємодія між атомами описується потенціалами парної взаємодії між атомами відповідних сортів у вузлах решітки (φAA, φAB, і φBB). Використовуючи φAA, φAB, і φBB, ми можемо визначити енергію змішування, яка також відома як параметр регулярного розчину (Ω)

(1)

де Z – це координаційне число, тобто кількість атомів, найближчих до даного атома в кристалі. Для будь-якого розподілу атомів в бінарному сплаві потенціали парних взаємодій найближчих сусідів можна визначити через Х( імовірність пари типу А-В знаходитись у двох сусідніх вузлах), тоді NZX– кількість пар АВ в суміші з N атомів. Тоді вільна енергія Гібса бінарного сплаву дорівнює:

(2)

NAі NB- кількість атомів двох видів, і N=NA+NB . Перший доданок – енергія ідеального сплаву (енергетичний доданок), другий – ентропія змішування, і останній – додаткова енергія неідеального сплаву. Це рівняння справедливе для будь-яких конфігурацій атомів. Для регулярних розчинів, припущено що А і В атоми рандомно розподілені, тоді Х, який залежить від розподілу атомів, дорівнює CACB, де СА=NA/N, і CB=NB/N.

Для ідеального розчину, Ω=0, або (φAABB)/2= φAB.

Для Ω>0, формування пар АА і ВВ знижує загальну енергію, так що сплав прямує до фази розпаду, атоми А кластеруються разом, а атоми В теж кластеруються разом.

Для Ω<0, формування пар АВ зменшує загальну енергію, так що сплав упорядковується. Це така порада для контролю за утворенням структур.

3.3 Фазова діаграма регулярного розчину

Припущено, що в регулярному розчині атоми рандомно розподілені, так що Х=С(1-С), де С=СВ , СА=1-С. Гранична фаза дорівнює

(3)

Критична точка при С=1/2 і Т=ТС, тоді kBTC=Ω/2.

Для фази розділу, границя спінодальної області дорівнює

C(1-C)=

(4)

Фазова діаграма регулярного розчину зображена на рис.3.3.1.

Впорядкування відбувається для від’ємних величин Ω. Концентрації атомів сорту А та В дорівнюють СА, СВ, відповідно, або С та 1-С, тоді

Х=(С2+(1-С)2)/2

Рис.3.3.1 Фазова діаграма для регулярного розчину

3.4 Енергія площини

В цьому підрозділі аналізуються атомні площини, що розташовані паралельно. Ми припускаємо, що атоми рандомно розподілені в кожній площині, і що середня концентрація змінюється від площини до площини. Розташування кожної площини визначається однією просторовою змінною,z.

Як показано в рівнянні (2), вільна енергія може бути оцінена якщо ZX (кількість пар АВ на атом) відоме. ТодіΩХ робить внесок енергії у вільну енергію Гібса, як показано в рівнянні (2).

Кожен атом має Z найближчих сусідів, і ми припускаємо, що ζз них – найближчі сусіди з верхньої площини, і ζ– найближчі сусіди з нижньої площини, тоді (Z - 2ζ) – найближчі сусіди в цій самій площині. С(z) – концентрація атомів сорту В в площині при z , і 1 - С(z) - концентрація атомів сорту А. Тоді загальна кількість пар АВ для вузлів площини zдорівнює кількості пар АВ з інших вузлів в цій самій площині, плюс кількість пар АВ між концентрацією атомів А типу в площині z і концентрацією В атомів в площині z+d і z-d, плюс кількість пар АВ між концентрацією атомів В сорту в площині z і концентрації А в площині z+d і z-d.

(5)

Зведення подібних доданків

(6)

Тоді

Перший доданок в рівнянні (7) тепер є кількістю зв’язків АВ в рівномірному рандомному сплаві. Другий доданок – поправка для кількості зв’язків АВ якщо структура не рівномірна.