Смекни!
smekni.com

Проектирование трансформатора (стр. 2 из 3)

см2.

2.9 Расчет размеров главной изоляции окна трансформатора (в соответствии с рисунком 3)

Выпишем главные изоляционные промежутки для нашего случая:

, см (с учетом емкостных и прессующих колец);
, см;
, см;
, см;
, см.

Для расчетов целесообразно принимать следующие соотношение главных изоляционных промежутков

Примем предварительно отношение высоты обмотки НН к ее ширине равным

В этом случае
.

Рисунок 3 – Эскиз окна

После чего находим:

(2.9)

см.

см.

(2.9 a)

см.

2.10 Высота стержня равна:

(2.10)

см.

2.11 Расстояние между соседними стержнями (ширина окна трансформатора)

(2.11)

см.

3. ОПРЕДЕЛЕНИЕ ВЕСА АКТИВНЫХ МАТЕРИАЛОВ

3.1 Средняя длина витка обмотки НН

(3.1)

см.

3.2 Средняя длина витка обмотки ВН

(3.2)

см.

3.3 Масса обмотки НН

(3.3)

где γ = 8,9, кг/дм3 – удельный вес меди.

3.4 Масса обмотки ВН

(3.4)

кг.

3.5 Общий вес обмоточной меди

(3.5)

кг.

3.6 Вес стержней магнитопровода

(3.6)

кг,

где γс = 7,65, кг/дм3 – удельный вес электротехнической стали.

3.7 Вес верхнего и нижнего ярма

(3.7)

кг,

где длина ярма

, а площадь поперечного сечения ярма в данном случае принята равной площади поперечного сечения стержня.

3.8 Вес участков сопряжения стержней и ярм магнитопровода

(3.8)

кг.

3.9 Общий вес стали магнитопровода

(3.9)

кг.

4. РАСЧЕТ ХАРАКТЕРИСТИК

трансформатор электрический магнитопровод обмотка

4.1 Расчет потерь холостого хода, Вт

(4.1)

Вт.

Данная величина получилась на 2,7 % больше, чем в задании. Эту величину следует признать удовлетворительной, так как погрешность не превышает допустимой.

4.2 Расчет реактивной составляющей тока холостого хода

(4.2)

4.3 Расчет активной составляющей тока холостого хода:

(4.3)

%.

4.4 Расчет тока холостого хода

, %.

Данная величина получилась больше, чем в задании на 14 %, что вполне допустимо, так как погрешность не превышает допустимой.

4.5 Расчет потерь КЗ в обмотках:

(4.5)

Вт.

4.6 Расчет потерь в отводах:

(4.6)

Вт.

4.7 Расчет потерь в стенках бака можно провести по (31) или так

(4.7)

, Вт.

4.8 Расчет потерь КЗ

(4.8)

= 79810 + 86 + 4500 = 84400, Вт.

4.9 Расчет активной составляющей напряжения КЗ

(4.9)

%.

4.10 Расчет реактивной составляющей напряжения КЗ

(4.10)

(4.10 а)

(4.10 б)

см.

см.

тогда:

4.11 Расчет напряжения КЗ

, (4.11)

,%.

Данная величина получилась больше той, что оговорена заданием, однако погрешность равна 1,6 %, что меньше допустимой погрешности 5 % в данном случае.

4.12 Расчет данных к построению внешней характеристики.

Поскольку внешняя характеристика является, по сути, прямой линией, то для ее построения достаточно определить две точки. Расчет следует вести для двух значений коэффициента мощности 0,8 и 1,0. Начальная точка внешней характеристики (холостой ход) будет общей для обеих характеристик: при холостом ходу величина напряжения равна 100 %.

Рассчитаем изменение напряжения под нагрузкой при

по известной формуле

, (4.12)

%.

Если

,

,%.

Для большей наглядности эти две линейные зависимости следует построить на общем графике.

Рисунок 4 – Внешняя характеристика трансформатора.


4.13 Расчет кривой КПД в зависимости от нагрузки

(4.13)

Результаты расчетов кривых КПД в зависимости от коэффициента нагрузки приведем в таблице 2 для двух значений коэффициента мощности 1,0 и 0,8.

Таблица 2 – Результаты расчетов кривых КПД

η 98,169 99,105 99,14 99,13 99,08 99,02 98,95 98,87 98,78 98,7
kН 0,1 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1
η 98,53 99,28 99,31 99,3 99,26 99,21 99,16 99,09 99,03 98,95

Рассчитанные зависимости КПД следует представить на графике. Учитывая то обстоятельство, что форма этих характеристик и их вид подобны, приведем только зависимость с коэффициентом мощности, равным 0,8, как наиболее характерной величиной для практики эксплуатации трансформаторов. Такая характеристика приведена на рисунке 5.