Смекни!
smekni.com

Расчет и анализ установившихся режимов работы электрических машин (стр. 3 из 7)

Синхронная машина состоит из неподвижной части — статора — и вращающейся части — ротора. Статоры синхронных машин в принципе не отличаются от статоров асинхронных двигателей, т. е. состоят из корпуса, сердечника и обмотки. Конструктивное исполнение статора синхронной машины может быть различным в зависимости от назначения и габаритов машины. Так, в многополюсных машинах большой мощности при наружном диаметре сердечника статора более 900 мм пластины сердечника делают из отдельных сегментов, которые при сборке образуют цилиндр сердечника статора. Корпуса статоров крупногабаритных машин делают разъемными, что необходимо для удобства транспортировки и монтажа этих машин. Роторы синхронных машин могут иметь две принципиально различающиеся конструкции: явнополюсную и неявнополюсную. В энергетических установках по производству электроэнергии переменного тока в качестве первичных (приводных) двигателей синхронных генераторов применяют в основном три вида двигателей: паровые турбины, гидравлические турбины либо двигатели внутреннего сгорания (дизели). Применение любого из перечисленных двигателей принципиально влияет на конструкцию синхронного генератора..

Паровая турбина работает при большой частоте вращения, поэтому приводимый ею во вращение генератор, называемый турбогенератором, является быстроходной синхронной машиной.

Рис. 1.10. Конструкция роторов синхронных машин

а - ротор с явно выраженными полюсами; б—ротор с неявно выраженными полюсами.

Роторы этих генераторов выполняют либо двухполюсными (n1 = 3000 об/мин), либо четырехполюсными (n1 = 1500 об/мин).

В процессе работы турбогенератора на его ротор действуют значительные центробежные силы. Поэтому по условиям механической прочности в турбогенераторах применяют неявнополюсный ротор, имеющий вид удлиненного стального цилиндра с профрезерованными на поверхности продольными пазами для обмотки возбуждения (см. рис. 1.9, б). Сердечник неявнополюсного ротора изготовляют в виде цельной стальной поковки вместе с хвостовиками (концами вала) или же делают сборным. Обмотка возбуждения неявнополюсного ротора занимает лишь ⅔ его поверхности (по периметру). Оставшаяся ⅓ поверхности образует полюсы. Для защиты лобовых частей обмотки ротора от разрушения действием центробежных сил ротор с двух сторон прикрывают стальными бандажными кольцами (каппами), изготовляемыми обычно из немагнитной стали.

Рис. 1.11. Турбогенератор

1 – возбудитель, 2 – корпус, 3 – сердечник статора, 4 – секции водородного охлаждения, 5 - ротор

1.3 Асинхронный двигатель

1.3.1 Принцип действия асинхронного двигателя

Неподвижная часть асинхронного двигателя, статор имеет такую же конструкцию, что и статор синхронного генератора. В расточке статора расположена вращающаяся часть двигателя — ротор, состоящий из вала, сердечника и обмотки (рис. 1.11.). Обмотка ротора представляет собой короткозамкнутую конструкцию состоящую из восьми алюминиевых стержней, расположенных в продольных пазах сердечника ротора, замкнутых с двух сторон по торцам ротора алюминиевыми кольцами (на рисунке эти кольца не показаны). Ротор и статор разделены воздушным зазором. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле статора, Частота вращения которого n1определяется выражением п1 =f160/р. Вращающееся поле статора (полюсы N1и S1) сцепляется как с обмоткой статора, так и с обмоткой ротора - и наводит в них ЭДС. При этом ЭДС обмотки статора, являясь ЭДС самоиндукции, действует встречно приложенному к обмотке напряжению и ограничивает значение тока в обмотке. Обмотка ротора замкнута, поэтому ЭДС ротора создает в стержнях обмотки ротора токи. Взаимодействие этих токов с полем статора создает на роторе электромагнитные силы F3M, направление которых определяют по правилу «левой руки». Из рис.1.11. видно, что силы F3Mстремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил F3M создает на роторе электромагнитный момент М, приводящий его во вращение с частотой п2. Вращение ротора посредством вала передается исполнительному механизму. Таким образом, электрическая энергия, поступающая из сети в обмотку статора, преобразуется в механическую энергию вращения ротора двигателя

Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора зависят от порядка следования фаз напряжения, подводимого к обмотке статора. Частота вращения ротора п2, называемая асинхронной, всегда меньше частоты вращения поля n1, так как только в этом случае происходит наведение ЭДС в обмотке ротора асинхронного двигателя.

Таким образом, статор синхронной машины не отличается от статора асинхронной машины, и выполняют они одинаковуюфункцию: при появлении в обмотке статора тока возникает вращающееся магнитное поле и в этой обмотке наводится ЭДС. Именно по этой причине изучение принципа выполнения и конструкции обмоток статора, а также изучение электромагнитных процессов, связанных с наведением в обмотке статора ЭДС и возникновением вращающегося магнитного поля, должнопредшествовать изучению специфических вопросов теории асинхронных и синхронных машин.


Рис. 1.12. К принципу действия асинхронного двигателя

1.3.2Конструкция асинхронного двигателя

Асинхронный двигатель состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каждая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора — вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками.

По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис. 1.12.). Двигатели этого вида имеют наиболее широкое применение.

Неподвижная часть двигателя — статор — состоит из корпуса 11 и сердечника 10 с трехфазной обмоткой. Корпус двигателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

В корпусе расположен сердечник статора 10, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехническойстали толщиной обычно 0,5 мм; покрыты слоемизоляционного лака, собраны в пакет и, скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора, соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.


Рис. 1.13. Устройство трехфазного асинхронного двигателя короткозамкнутым ротором:

1 — вал; 2,6 — подшипники; 3,7 — подшипниковые щиты; 4 — коробка выводов; 5 — вентилятор; 8 — кожух вентилятора; 9 — сердечник ротора с короткозамкнутой обмоткой; 10 — сердечник статора с обмоткой; 11 — корпус; 12 — лапы.


В расточке статора расположена вращающаяся часть двигателя — ротор, состоящий из вала 1 и сердечника 9 с короткозамкнутой обмоткой. Такая обмотка, называемая «беличье колесо», представляет собой ряд металлических (алюминиевых или медных) стержней, расположенных в пазах сердечника ротора, замкнутых с двух сторон короткозамыкающими кольцами (рис. 1.13, а). Сердечник ротора также имеет шихтованную конструкцию, но листы ротора не покрыты изоляционным лаком, а имеютна своей поверхности тонкую пленку окисла. Это являетсядостаточной изоляцией, ограничивающей вихревые токи, так как величина их невелика из-за малой частоты перемагничивания сердечника ротора. Например, при частоте сети 50 Гц и номинальном скольжении 6% частота перемагничивания сердечника ротора составляет 3 Гц.

Рис. 1.13, а.

Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки. Вал ротора вращается в подшипниках качения 2 и б, расположенных в подшипниковых щитах 3 и 7. Охлаждение двигателя осуществляется методом обдува. Поток воздуха создается центробежным вентилятором 5, прикрытым кожухом 8. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве. Концы обмоток фаз выводят на зажимы коробки выводов 4. Монтаж двигателя в месте его установки осуществляется либо посредством лап 12 (см. рис. 1.12), либо посредством фланца.