Смекни!
smekni.com

Проектирование электрической части подстанций (стр. 7 из 7)

22,1≤29,97.

Проверка по экономической плотности тока:

где Jэ – нормированная плотность тока.

Примем провод АС 120.

Минимальное сечение по условию термической стойкости:

7.2 Выбор жестких шин на стороне 10 кВ

Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6–10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных полимерных изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин.

В РУ 6–10 кВ применяется жёсткая ошиновка.

Расчётный ток продолжительного режима:


А

Выбираем сечение шин по допустимому току. Принимаем двухполюсные алюминиевые шины прямоугольного сечения 2 (80´10) мм2,марки АДЗ1Т-из алюминиевого сплава, закаленные и естественно состаренные;

А.

По условию нагрева в продолжительном режиме шины проходят:

А<

Проверка на термическую стойкость:

Минимальное сечение по условию термической стойкости:

Шины термически стойкие.

Проверяем шины на механическую прочность. Определяем пролёт

при условии, что частота собственных колебаний будет больше 200 Гц:

Если шины расположены плашмя, а полосы в пакете жёстко связаны между собой, то по таблице 6.1 /4/ момент инерции:

;
м

Принимаем расположение пакета шин плашмя; пролёт 1,4 м; расстояние между фазами

м.

Определяем расстояние между прокладками:

м;

м,

где

- расстояние между осями полос,
;

- момент инерции полосы, см4;

-коэффициент формы (рис. 6.5 /4/);

- модуль упругости материала шин (табл. 6.2 /4/);

- масса полосы на 1 м определяется по справочнику /3/.

Принимаем меньшее значение

м, тогда число прокладок в пролёте
. Принимаем
.

Определяем силу взаимодействия между полосами:

Н/м

Напряжение в материале полос:

МПа,

где

см3 –момент сопротивления.

Напряжение в материале шин от взаимодействия фаз:

МПа,

где

см3.

МПа.

Таблица 15 – Сопоставление расчётных и каталожных данных

Расчётные данные Справочные данные Условия выбора
Imax = 1864 А sрасч = 21,13 МПа qmin = 2,43мм2 I.доп = 2410 А sдоп=75 МПа q=1600 мм2 2410≥1864 75≥21,13 1600≥2,43

7.3 Выбор изоляторов

7.3.1 Выбор подвесных изоляторов

Для большей надежности выбираем полимерный изолятор типа ЛК 70/110. Этот изолятор беру как для промежуточных, так и для анкерных опор.

По коэффициенту запаса n1 при наибольшей нагрузке и n2 при отсутствии ветра и гололеда проверяю, подходит ли этот изолятор.

; (26)

, (27)

где Р – электромеханическая разрушающая нагрузка изолятора, кг

р7, р1 – единичные нагрузки от собственного веса провода и от веса провода с гололедом при ветре, кг/м;

р77·F=111,3·0,093=10,3 н/м (31)

р11·F=111,3·0,034=3,78 н/м (32)

lвес – весовой пролет, м;

Gг – вес гирлянды, кг.

Итак, выбранный тип изолятора соответствует условиям.

7.3.2 Выбор опорных изоляторов

Выбираем опорные изоляторы марки ИОСК 4 -10/80 УХЛ1 с параметрами: Fразр =4000 Н.

Проверяем изоляторы на механическую прочность на изгиб.

Допустимая нагрузка на головку изолятора:

Максимальная сила, действующая на изгиб /4/.

Н

Допустимая нагрузка на головку изолятора:

Н


Таблица 16 – Сопоставление расчётных и каталожных данных

Расчётные данные Справочные данные Условия выбора
Uр = 10 кВ UН = 10 кВ 10=10
FРАСЧ = 1385H FДОП = 3600 H 1386>205,15

7.3.3 Выбор проходных изоляторов

Выбираем изолятор ИП-10/1600–2500УХЛ1, Imax=1740А, Fразр=12500 Н

H

Н

Таблица 17 – Сопоставление расчётных и каталожных данных

Расчётные данные Справочные данные Условия выбора
Uр = 10 кВ Uн = 10 кВ 10=10
FРАСЧ = 1386H FДОП = 7500 H 7500>1386
Iр=1740 А Iн=2500 А 2500>1740

Заключение

Курсовой проект по дисциплине «Электропитающие системы и сети часть 2» развивает навыки практического использования знаний, способствует их закреплению и обобщению. Выполняя курсовое проектирование, студент учится пользоваться справочной литературой, ГОСТами, едиными нормами и расценками, таблицами, приобретает навыки составления технико-экономических записок, подготавливается к дипломному проектированию.

В процессе выполнения курсового проекта был произведен расчёт и выбор мощности и количества трансформаторов ГПП. Решены вопросы компенсации реактивной мощности. Составлена схема электроснабжения ГПП. Рассчитаны токи короткого замыкания на шинах ГПП, с помощью которых выбрано и проверено основное оборудование ГПП (выключатели, трансформаторы тока и напряжения, разъединители, проходные и опорные изоляторы, сборные шины).


Библиографический список

1. Справочник по проектированию электроснабжения / Под ред. Ю.Г. Барыбина и др. – М.: Энергоатомиздат, 1990. – 576 с.

2. Герасимова В.Г., Дьякова А.Ф., Попова А.И. Электротехнический справочник Т.3. Кн. 1. Производство, передача и распределение электрической энергии/ В.Г. Герасимова, А.Ф. Дьякова, А.И. Попова и др. – М.: МЭИ, 2002. – 964 с.

3. Неклепаев Б.Н., Крючков И.П. Электрическая часть электростанций и подстанций: Справочные материалы для курсового и дипломного проектирования. М.: Энергоатомиздат, 1989. – 608 с.

4. Мясоедов Ю.В., Савина Н.В., Роточёва А.Г. Проектирование электрической части электростанций и подстанций: Учебное пособие. Благовещенск: Амурский гос. ун-т, 2002. – 139 с.

5. Рожкова Л.Д., Козулин В.С. Электрооборудование станций и подстанций/ Л.Д. Рожкова, В.С. Козулин. – М.: Энергоатомиздат, 1987. – 648 с.