Смекни!
smekni.com

Открытие электрона (стр. 3 из 4)

Принцип Паули позволил объяснить насыщение уровней. В соответствии со свойствами симметрии

-функции при перестановке двух частиц для электронов возможны только антисимметричные состояния. В дальнейшем принцип Паули сыграл решающую роль при построении статистики Ферми—Дирака для частиц с полуцелым спином — фермионов. Для частиц с целым спином (в единицах
) — бозонов была построена статистика Бозе — Эйнштейна. Принцип Паули не имеет аналога в классической физике, и физические причины существования этого запрета не полностью еще понятны. Паули предложил сначала простое правило, автоматически объясняющее наличие групп из 2, 8, 18 и 32 элементов. Он постулировал, что одну электронную орбиталь (или стоячую волну) могут занимать не более двух электронов. Вскоре было обнаружено наличие спина у электрона, и получилось, что принцип Паули имеет основание.

Если идти по системе химических элементов в направлении увеличения их номера, то оказывается, что электронами сначала заполняются наинизшие уровни энергии. Так, атом висмута выглядит так же, как и атом свинца, но с одним отличием — у висмута на 6p-оболочке на один электрон больше. Существует еще одно правило заполнения оболочек — правило Хунда, согласно которому, при заполнении s, p, d и т. д. уровней их сначала занимают электроны с одинаковой ориентацией спина и только потом — с противоположной. Так можно построить модели 92 стабильных атомов Периодической системы химических элементов.

Так, атом азота имеет 7 электронов; из них по два (с «правым» и «левым» спином) располагаются на уровнях \s и 2s, а остальные три — на уровне 2р, который может вместить только 6 электронов. По правилу Хунда последние три электрона азота имеют одинаковую ориентацию спина. В волновой модели каждому из р-электронов соответствует волновая функция из двух симметричных «яйцевидных» половинок; три из них могут быть ориентированы вдоль любой из трех осей прямоугольной системы координат, в результате атом выглядит сферически симметричным. Следующий атом — кислород — должен содержать в одном из этих «p-пространств» еще один электрон с противоположно направленным спином. Это можно представить так: две полностью конгруэнтные p-орбитали проникают друг в друга, совершенно не влияя одна на другую. Периодическая система элементов теряла свою загадочность.

Как известно, природные химические элементы занимают в Периодической таблице места до № 92, т. е. до урана. Более тяжелых элементов нет ни на Земле, ни в метеоритах, приходящих из Космоса. Это и понятно — в ядрах атомов этих элементов больше протонов, значит, ядра таких элементов неустойчивы, а атомы — радиоактивны. Для получения трансурановых элементов были созданы специальные установки, названные циклотронами, в которых создаются мощные пучки а-частиц и более тяжелых частиц для бомбардировки ими урана. Первые циклотроны были созданы в США, где были получены сначала плутоний и нептуний, а затем — вплоть до элемента № 101, который был назван менделевием.

2.2 Химический катализ и методы управления химическими процессами

Реакционная способность вещества на 50 % определяется его составом и структурой и на 50 % — его реагентом по реакции. Так, если реагент — сильная кислота, то вещество ведет себя как основание, и наоборот. Эту двойственность поведения в реакции объяснил Бутлеров, считая, что вещество расщепляется на два изомера и это влияет на равновесную изомерию (таутомерия). Впоследствии А. Н. Несмеянов установил, что это — раздвоение свойств изомера как целого.

К 70-м годам XIX в. идеи и методы физики стали проникать в смежные области естествознания. Н. Н. Бекетов впервые сформулировал и обосновал положение о том, что физическая химия — самостоятельная наука, основная задача которой состоит в изучении связи между физическими и химическими свойствами веществ, явлений и процессов. Работами М.Бертло, Ю.Томсона, В.Ф.Лучинина и Н.Н.Бекетова была создана термохимия, изучающая закономерности в теплоте образования и сгорания веществ в зависимости от их химического строения. Исследования Дж. Гиббса, Я. Г. Вант-Гоффа, В.Г.Нернста и других ученых развили химическую термодинамику, изучающую энергетические процессы, которые сопровождают процессы химические. Гиббс сформулировал правило фаз, по которому система имеет несколько состояний, разделенных между собой границами. Нернст установил, что при приближении к температуре, равной 0 К, тепловой эффект и движущая сила химических реакций все более совпадают и это дает возможность производить точный расчет химических реакций. Начало систематическому расчету реакций положил Н.А. Меншуткин.

Химические реакции — основа химии. При столкновениях молекул может высвободиться энергия, достаточная для перегруппировки электронов в них и формирования нового набора связей, т. е. образования новых соединений. Химические реакции обычно представляют в виде уравнений: слева — исходные вещества, справа — продукты реакции; стрелка обращена в сторону более низкой суммарной энергии связей, показывая, в какую сторону реакция стремится идти самопроизвольно. Но реакции могут идти в обе стороны и представляют собой перераспределение химических связей.

Исследования общих закономерностей, управляющих химическими процессами, заинтересовали возникшую в конце XIX в. химическую индустрию. Если какое-то вещество является катализатором, или ингибитором, происходит целый комплекс реакций, участвуют все вещества, оказавшиеся в зоне реакции, и могут получиться различные побочные продукты. От знания скорости и направления реакций, влияния на них различных факторов зависела производительность химической промышленности. Определение характера химического процесса казалось почти невозможным, пока не создали химическую термодинамику и кинетику.

Ответ на вопрос, от чего зависит возможность осуществления реакции, перестройки химических связей дают законы термодинамики. Например, для получения теплоты требуется определенное топливо. Переход теплоты от нагретого тела связан с распределением энергии: атомы вещества отдают энергию теплового движения окружающим атомам, не меняя своего состояния. При химических реакциях энергия тоже рассеивается, но меняются окружение атомов и исходное вещество, может возникнуть новое вещество. При решении разнообразных термодинамических задач используют особые функции — термодинамические потенциалы. Зная выражение термодинамических потенциалов, через независимые параметры системы можно вычислить и другие характеристики процессов. Приведем некоторые из них.

Термодинамический потенциал равен изменению потенциала, приходящегося на одну частицу в соответствующем процессе. И реакция возможна, если она сопровождается уменьшением величины потенциала. Когда камень падает в поле тяготения, уменьшается его потенциальная энергия. Подобный процесс наблюдается и в химической реакции: когда она идет, ее свободная энергия переходит на более низкий уровень. В этих примерах аналогия полная, поскольку нет изменения энтропии. Но в химических реакциях изменение энтропии необходимо учитывать, и возможность реакции еще не означает, что она пойдет самопроизвольно. Термодинамика объясняет: реакция пойдет только при уменьшении энергии веществ и увеличении энтропии. Энтропия растет, так как в малой молекуле расположение атомов менее упорядочено, чем в большой.

Но реальные процессы и состояния чаще всего являются неравновесными, а системы — открытыми. Такие процессы рассматриваются в неравновесной термодинамике.

Ле Шателье выдвинул принцип подвижного равновесия (1884). Сейчас его формулируют так: внешнее воздействие, которое выводит систему из состояния термодинамического равновесия, вызывает в ней процессы, направленные на ослабление результатов такого влияния. Появилась возможность смещать равновесие в сторону образования продуктов реакции через изменение температуры, давления и концентрации реагентов. Эти методы назвали термодинамическими.

Явление химического катализа было открыто в 1812 г. Кирхгофом. В XVIII в. уже знали о каталитическом действии селитры при получении серной кислоты, хотя смысл этого явления не поддавался объяснению. Берцеллиус связал природу взаимодействия агентов с электрохимическими потенциалами (1835), обозначив силу «вызывания химической деятельности» понятием каталитической силы. Либих предположил, что взаимодействие с катализатором может непрерывно менять химические связи в молекуле. Взгляды Либиха поддержал Д. И. Менделеев. К концу XIX в. поняли, что в реакции участвуют стенки сосуда, растворители и случайные примеси. Целенаправленное изучение катализа позволило к середине XX в. получать широкий круг органических продуктов, регулировать скорость и заданную направленность химических реакций.

Д.П.Коновалов положил начало физико-химической теории катализа, ввел понятие активной поверхности (1885) и вывел формулу для скорости автокаталитических реакций независимо от С. Оствальда. Теорией катализа занимался и Д. И. Менделеев (1886). При катализе происходит активация молекул реагента при контакте с катализатором: связи в веществе становятся более подвижными, «подталкивая» вещества к взаимодействию. В. Оствальд, сравнивая относительную активность различных кислот, пришел к выяснению условий химического равновесия и развитию катализа. Он определил катализатор как вещество, «которое изменяет скорость реакции, но не входит в состав конечного продукта реакции».