Смекни!
smekni.com

Фотохимические реакции. Радиационно-химические реакции (стр. 3 из 5)

Обычно скорость данной химической реакции при постоянных внешних условиях не остаётся постоянной, а изменяется во времени. По мере израсходования исходных веществ, скорость процесса уменьшается. Поэтому численные значения скорости реакций будут различными в зависимости от того, для какого момента или промежутка времени мы рассматриваем изменение концентраций.

Определить истинную скорость υ реакции в данный момент как производную от концентрации по времени можно следующим образом:

(2.6)

Константа скорости химической реакции численно равна скорости реакции в условиях, когда концентрации каждого из исходных веществ равны единице.

В отношении кинетики химические реакции разделяют или по признаку молекулярности реакции, или по признаку порядка реакции. Молекулярность реакции определяется числом молекул, одновременным взаимодействием между которыми осуществляется акт химического превращения. По этому признаку реакции разделяются на одномолекулярные ( или мономолекулярные), двухмолекулярные ( или бимолекулярные) и трёхмолекулярные (или тримолекулярные).

К одномолекулярным реакциям относятся некоторые реакции разложения молекул и внутримолекулярных перегруппировок,например газовая реакция:

Для простых одномолекулярных реакций

(2.7)

К двухмолекулярным реакциям относятся такие, в которых взаимодействие происходит при столкновении двух молекул различного или одинакового вида:

Для простых двухмолекулярных реакций

(2.8)

К трёхмолекулярным реакциям должны быть отнесены реакции, в которых для взаимодействия необходимо одновременное столкновение трёх молекул одного или различных видов. В общем случае уравнение скорости простых трёхмолекулярных реакций имеет вид:

(2.9)

Примером трёхмолекулярной реакции может служить указанная выше реакция

Фотохимия изучает химические процессы, идущие при воздействии на вещество света или же сопровождающиеся свечением. Фотохимические реакции называются фотолизом; они могут совершаться в твёрдых, жидких и газообразных телах. Фотохимические реакции возникают под влиянием видимого света, инфракрасных и ультрафиолетовых лучей с длинами волн от 1000 до 10000Å. Энергия этих квантов равна от 120 до 1200 кДж/моль или от 1,2 до 12 эв. Поглощение энергии электромагнитных колебаний усиливает вращательное движение молекул или колебания атомов и атомных групп, составляющих молекулу, и может приводить к возбуждению электронов наружных оболочек атомов и появлению активных частиц. Под действием света протекают многие химические процессы.

Эйнштейн и Штарк на основе представления о квантовой природе света и строения молекул установили закон фотохимической эквивалентности, согласно которому каждая молекула, реагирующая под действием света, поглощает один квант радиации, вызывающей реакцию. Из этого закона следует, что в фоточувствительной системе, находящейся под воздействием излучения с частотой ν, на каждый поглощённый квант излучения hν приходится одна активированная молекула. По закону Эйнштейна и Штарка количество энергии РР, поглощаемой одной грамм – молекулой вещества, определяется по уравнению

(2.10)

где

- число Авогадро;
- постоянная Планка;
- частота; с – скорость света;
- длина волны.

Если в предыдущее уравнение подставить численные значения постоянных

,
и c, то

Большими энергией и химической активностью обладают колебания с меньшей длиной волны. В видимом свете наиболее активными являются фиолетовые лучи с λ=4000 Å; для них E=297 кДж/моль. Наименее активна красная часть спектра, где λ=7500 Å; для неё E=159 кДж/моль.

Число молей вещества, которое в единицу времени в единице объёма активируется под действием радиации и может участвовать в первичной фотохимической реакции, в соответствии с первым уравнением можно рассчитать по формуле

(2.11)

где E – световая энергия, которая поглощается единицей объёма системы в единицу времени.

При опытной проверке закона фотохимической эквивалентности Эйнштейна – Штарка часто обнаруживается расхождение между числом частиц, которое активируется под действием радиации (числом поглощённых квантов), и числом прореагировавших молекул.

Сложность общего течения фотохимических реакций зависит от последующих вторичных реакций, идущих без воздействия света, в связи с чем для характеристики фотохимических процессов введено понятие квантового выхода γ, который равен отношению числа действительно прореагировавших молекул к числу поглощённых квантов.

Таким образом, скорость фотохимической реакции определяется по уравнению

(2.12)

Поглощённую энергию E можно выразить через другие величины. По закону Ламберта – Бера интенсивность I светового потока после прохождения через слой вещества толщиной l равна

(2.13)

где

- начальная интенсивность светового потока радиации; c – концентрация вещества, поглощающего свет; ε – молекулярный коэффициент поглощения. Отсюда поглощенная энергия E равна

(2.14)

Подставляя формулы, получим наиболее общее выражение для скорости фотохимической реакции:

(2.15)

Фотохимические реакции могут быть весьма различными. К ним относятся и реакции фотосинтеза углеводов, осуществляемые растениями под действием солнечного света, и реакции, лежащие в основе фотографического процесса, и явления люминесценции, и выцветание красок и т.д.

Одними из разновидностей фотохимических реакций является фотосинтез и люминесценция.

2.2 Фотосинтез

Фотосинтез, уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Основа фотосинтеза — последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора — восстановителя (вода, водород) к акцептору — окислителю (

, ацетат) с образованием восстановленных соединений (углеводов) и выделением
, если окисляется вода.

Интенсивность, или скорость процесса фотосинтеза в растении зависит от ряда внутренних и внешних факторов. Из внутренних факторов наиболее важное значение имеют структура листа и содержание в нем хлорофилла, скорость накопления продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых концентраций необходимых неорганических веществ. Внешние параметры – это количество и качество света, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения.

Скорость фотосинтеза возрастает линейно, или прямо пропорционально увеличению интенсивности света. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, прекращается, когда освещенность достигает определенного уровня 10000 люкс. Дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. Область стабильной скорости фотосинтеза называется областью светонасыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 100000 люкс. Следовательно, растениям, за исключением тех, которые растут в густых лесах и в тени, падающего солнечного света бывает достаточно для насыщения их фотосинтетической активности (энергия квантов, соответствующих крайним участкам видимого диапазона – фиолетового и красного, различается всего лишь в два раза, и все фотоны этого диапазона в принципе способны осуществить запуск фотосинтеза).

В случае низких интенсивностей света скорость фотосинтеза при 15 и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования света, подобно истинным фотохимическим реакциям, не чувствительны к температурам. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Следовательно, в области светового насыщения уровень фотосинтеза зависит не только от поглощения фотонов, но и от других факторов. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10 до 35°С, наиболее благоприятные условия - это температура около 25°С.