Смекни!
smekni.com

Компоненты электронной техники (стр. 10 из 11)

3.4 Дроссели высокой частоты

Дросселем высокой частоты называют катушку индуктивности, включаемую в цепь для увеличения сопротивления токам высокой частоты. Основные параметры дросселя: полное сопротивление, сопротивление постоянному току и собственная емкость. Сопротивление дросселя постоянному току должно быть минимальным, полное сопротивление — достаточно большим и иметь индуктивный характер. Собственная емкость С0 дросселя определяет его критическую частоту

fкр=0,5π(LC0)0,5, (3.7)

где L—индуктивность дросселя.

На частотах ниже критической полное сопротивление дросселя имеет индуктивный характер. Критическая частота дросселя должна быть возможно большей (по крайней мере больше максимальной рабочей частоты аппаратуры, в которой используется дроссель). Поэтому его собственная емкость должна быть минимальной. Точность индуктивности не имеет значения.

Конструктивно дроссели высокой частоты выполняются в виде одно- или многослойных катушек с ферромагнитными сердечниками или без них. Многослойные используют в диапазонах ДВ и СВ, однослойные — на более коротких волнах. Для уменьшения собственной емкости многослойные катушки секционируют, а однослойные наматывают с принудительным шагом. Еще лучшие результаты можно получить при намотке с прогрессивным шагом, при этом дроссель должен быть подключен так, чтобы меньший потенциал высокой частоты был со стороны малого шага намотки.

Если добротность дросселя не имеет значения, то с целью уменьшения собственной емкости дросселя выбирают диаметр каркаса от 3 до 6 мм и наматывают провод малого диаметра (0,02... 0,06 мм). Однако плотность тока не должна превышать 4...5 А/мм2.

Дроссели с ферромагнитными сердечниками отличаются меньшими размерами, меньшим количеством витков при заданной индуктивности и, следовательно, меньшей собственной емкостью. Поэтому они могут работать в более широком диапазоне частот. Если через дроссель протекает небольшой ток и требуется большая индуктивность, то целесообразно использовать тонкие стержни (диаметром 1,5...2 мм) из ферритов с большой магнитной проницаемостью. Если использовать феррит марки 600НН, у которого с увеличением частоты уменьшается диэлектрическая проницаемость, а при частоте выше граничной — и магнитная проницаемость, то индуктивность и собственная емкость дросселя будут уменьшаться с повышением частоты, что исключит резонансные явления в широком диапазоне частот.

Добротность дросселя важна в случаях, когда он подключается параллельно колебательному контуру (по переменному току). При этом целесообразно изготовление дросселя с ферромагнитным сердечником.

Число витков дросселя определяют так же, как число витков контурных катушек индуктивности. Диаметр провода выбирают так, чтобы получить приемлемую плотность тока и падение напряжения на дросселе не более 10% напряжения источника питания.

При изготовлении дросселей высокой частоты с ферромагнитными сердечниками цилиндрической формы на сердечник накладывают слой конденсаторной бумаги или диэлектрической пленки и сверху наматывают обмотку. Если используется броневой сердечник, обмотку располагают на секционированном каркасе из пластмассы. На тороидальном сердечнике обмотку наматывают секциями.

3.5 Общие сведения о трансформаторах и дросселях низкой частоты

Трансформатор - электромагнитное устройство переменного тока, предназначенное для изменения напряжения, согласования сопротивлений электрических цепей, разделения цепей источника и нагрузки по постоянному току, а также для изменения состояния цепи относительно корпуса. Основной частью трансформатора является магнитопровод из магнитно-мягкого материала с размещенными на нем обмотками.

Трансформаторы, используемые в приемно-усилительной аппаратуре, можно разделить на трансформаторы питания (силовые) и согласующие (сигнальные). Трансформаторы питания применяются в выпрямительных устройствах для получения различных напряжений. Согласующие трансформаторы используют для согласования входа усилителя и источника сигнала (входные), выхода усилителя с нагрузкой (выходные), в качестве элемента межкаскадной связи (межкаскадные).

Дроссель низкой частоты - катушка индуктивности с магнитопроводом, предназначенная для использования в электрических цепях в качестве индуктивного сопротивления.

В приемно-усилительной аппаратуре дроссели низкой частоты используются в фильтрах питания, различных низкочастотных фильтрах и цепях коррекции АЧХ.

Наиболее важными электрическими параметрами трансформаторов питания являются выходное напряжение, номинальная мощность, КПД, падение напряжения.

Номинальной мощностью трансформатора питания называют сумму номинальных мощностей вторичных обмоток (ГОСТ 80938—75), Номинальная мощность вторичной обмотки определяется как произведение тока при номинальной нагрузке на номинальное напряжение. Ряд номинальных напряжений вторичных обмоток установлен ГОСТ 10763—64. Допустимые отклонения напряжений от номинальных ±0,15 В при номинальных напряжениях не более 7,5 В и ±2%, при номинальных напряжениях более 7,5 В (ГОСТ 14233-74).

Номинальная мощность трансформатора пропорциональна частоте напряжения сети, индукции в магнитопроводе, плотности тока обмоток, площади сечения стали в магнитопроводе и площади сечения меди, заполняющей окно магнитопровода.

КПД трансформатора:

ή=Рном/(Рноммпоб)

где Рном — номинальная мощность трансформатора; Рмп — мощность потерь в магнитопроводе; Роб — мощность потерь в обмотках.

Падение напряжения ΔU, выраженное в относительных единицах, показывает степень изменения выходного напряжения при полном изменении тока нагрузки от нуля до номинального значения: ΔU=Робном. Следовательно, для повышения стабильности выходного напряжения необходимо уменьшать потери в обмотках путем снижения сопротивления обмоток.

Масса и габаритные размеры трансформатора зависят от номинальной мощности, напряжения, КПД и допустимой температуры перегрева трансформатора.

3.6 Согласующие трансформаторы

Согласующие трансформаторы применяются чаще всего в выходных каскадах УНЧ для согласования сопротивления нагрузки с выходным сопротивлением выходного каскада. Для междукаскадной связи согласующие трансформаторы применяют, когда требуется большая амплитуда тока на выходе усилителя. В этом случае использование согласующего трансформатора на входе оконечного каскада позволяет значительно повысить усиление мощности сигнала и снизить расход энергии питания. Кроме того, в предоконечном каскаде может быть применен транзистор меньшей мощности. Междукаскадный трансформатор необходим также при очень низком входном сопротивлении следующего каскада. На входе усилителя согласующие трансформаторы применяются, когда источник сигнала имеет малое выходное сопротивление и развивает малую ЭДС или при необходимости симметрирования входной цепи.

Основные параметры согласующих трансформаторов: индуктивность первичной обмотки L1 индуктивность рассеяния Ls, активное сопротивление обмоток r, собственная емкость Cтр,. коэффициент трансформации п, постоянная времени трансформатора τтр, критическая мощность Ркр, КПД и уровень нелинейных искажений, вносимых трансформатором.

Величины Ls,L1, Стр и r вместе с сопротивлением нагрузки определяют частотные искажения трансформаторного каскада. Индуктивность L1 зависит от постоянной и переменной составляющих токов в обмотках, которые влияют и на уровень нелинейных искажений. Чтобы частотные искажения не превышали допустимых, значение L1 должно быть достаточно большим, а Стр.и Ls— достаточно малыми.

Коэффициент трансформации — отношение числа витков вторичной и первичной обмоток. Значение n выбирается из условия согласования сопротивлений источника сигнала и нагрузки.

Постоянная времени трансформатора, работающего в режиме класса А, определяется по формуле:

τтр =2L1/r1 (3),

а работающего в режиме класса В—по формуле:

τтр =3,4L1/r1 (4)

где L1 — индуктивность, Г; r1 активное сопротивление, Ом, первичной обмотки.

Постоянная времени трансформатора зависит только от геометрических размеров магнитопровода и обмоток, а также от свойств материалов магнитопровода и проводов.

Критическая мощность трансформатора — мощность, при которой, вносимые трансформатором, нелинейные искажения равны максимально допустимым.

Нелинейные искажения, вносимые трансформатором, обусловлены нелинейностью характеристики намагничивания магнитопровода и в ряде случаев нестационарными процессами при отсечке тока в обмотках. Для того чтобы искажения не превышали допустимого уровня, амплитуда магнитной индукции в магнитопроводе при наибольшей амплитуде сигнала на трансформаторе и наинизшей частоте должна быть не больше допустимого значения, которое зависит от свойств материала магнитопровода.

Нелинейные искажения, обусловленные отсечкой тока в обмотках, например, при работе усилителя в режиме класса В, проявляются в основном на высших рабочих частотах. Для уменьшения этих искажений необходимо уменьшить индуктивность Ls.

3.7 Дроссели сглаживающих фильтров питания

Основными параметрами дросселей сглаживающих фильтров питания являются индуктивность, номинальный ток подмагничивания, сопротивление постоянному току, допустимое переменное напряжение. Во многих случаях стремятся при заданных габаритных размерах и массе получить возможно большую (или заданную) индуктивность при минимальном сопротивлении постоянному току. Поскольку индуктивность дросселя зависит от тока подмагничивания и амплитуды переменного напряжения, ее измеряют при номинальном токе подмагничивания и заданном переменном напряжении.