Смекни!
smekni.com

Абсолютно черное тело 2 (стр. 2 из 4)

Рис. 1.2.

1 - абсолютно черное тело; 2 - серое тело; 3 - реальное тело

Абсолютно черное тело является эталонным телом в теории теплового излучения. И, хотя в природе нет абсолютно черного тела, достаточно просто реализовать модель, для которой поглощательная способность на всех частотах будет пренебрежимо мало отличаться от единицы. Такую модель абсолютно черного тела можно изготовить в виде замкнутой полости (рис. 1.3), снабженной малым отверстием, диаметр которого значительно меньше поперечных размеров полости. При этом полость может иметь практически любую форму и быть изготовленной из любого материала.

Малое отверстие обладает свойством почти полностью поглощать падающее на него излучение, причем с уменьшением размера отверстия его поглощательная способность стремится к единице. Действительно, излучение через отверстие попадает на стенки полости, частично поглощаясь ими. При малых размерах отверстия луч должен претерпеть множество отражений, прежде чем он сможет выйти из отверстия, то есть, формально, отразиться от него. При многократных повторных переотражениях на стенках полости излучение, попавшее в полость, практически полностью поглотится.

Рис. 1.3.

В рассмотренной модели можно считать, что излучение, падающее на отверстие, не отражается, а полностью поглощается. Поэтому именно малому отверстию и приписывается свойство абсолютно черного тела.

Отметим, что если стенки полости поддерживать при некоторой температуре

, то отверстие будет излучать, и это излучение с большой степенью точности можно считать излучением абсолютно черного тела, имеющего температуру
. Исследуя распределение энергии этого излучения по спектру oC.Ленгли, Э.Прингсгейм, О.Люммер, Ф.Курлбаум и др.), можно экспериментально определить испускательные способности абсолютно черного тела
и
. Результаты таких экспериментов при различных значениях температуры приведены на рис. 1.4.

Рис. 1.4.

Из этих рассуждений следует, что поглощательная способность и цвет тела взаимосвязаны.

3. Закон Кирхгофа.

Закон Кирхгофа. Между испускательными и поглощательными свойствами любого тела должна существовать связь. Ведь в опыте с равновесным тепловым излучением (рис. 1.1)

равновесие в системе может установиться только в том случае, если каждое тело будет излучать в единицу времени столько же энергии, сколько оно поглощает. Это означает, что тела, интенсивнее поглощающие излучение какой-либо частоты, будут это излучение интенсивнее и испускать.

Поэтому, в соответствии с таким принципом детального равновесия, отношение испускательной и поглощательной способностей одинаково для всех тел в природе, включая абсолютно черное тело, и при данной температуре является одной и той же универсальной функцией частоты (длины волны).

Этот закон теплового излучения, установленный в 1859 г. Г.Кирхгофом при рассмотрении термодинамических закономерностей равновесных систем с излучением, можно записать в виде соотношения

(1.5)

или

(1.6)

где индексы 1, 2, 3... соответствуют различным реальным телам.

Из закона Кирхгофа следует, что универсальные функции

и
есть спектральные испускательные способности
и
абсолютно черного тела по шкале частот или длин волн, соответственно. Поэтому связь между ними определяется формулой
.

Излучение абсолютно черного тела имеет универсальный характер в теории теплового излучения. Реальное тело излучает при любой температуре всегда меньше энергии, чем абсолютно черное тело. Зная испускательную способность абсолютно черного тела (универсальную функцию Кирхгофа) и поглощательную способность реального тела, из закона Кирхгофа можно определить энергию, излучаемую этим телом в любом диапазоне частот или длин волн.

Значит эта энергию, излучаемая телом, определяется как разность между испускательной возможностью черного тела и поглощательной возможностью реального тела.

4. Закон Стефана-Больцмана

Закон Стефана-Больцмана. Экспериментальные (1879 г. Й.Стефан) и теоретические (1884 г. Л.Больцман) исследования позволили доказать важный закон теплового излучения абсолютно черного тела. Этот закон утверждает, что энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры, то есть

(1.7)

Этот закон часто используется в астрономии при определении светимости звезды по её температуре. Для этого необходимо перейти от плотности излучения к наблюдаемой величине — потоку. Формула для интегрального по спектру потока излучения будет выведена в третьей главе.

По современным измерениям постоянная Стефана-Больцмана

Вт/(м2(К4).

Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (1.7), а имеет вид

.

(1.8)

Коэффициент

в (1.8), всегда меньший единицы, можно назвать интегральной поглощательной способностью тела. Значения
, в общем случае зависящие от температуры, известны для многих технически важных материалов. Так, в достаточно широком диапазоне температур для металлов
, а для угля и окислов металлов
.

Для реальных нечерных тел можно ввести понятие эффективной радиационной температуры

, которая определяется как температура абсолютно черного тела, имеющего такую же энергетическую светимость, что и реальное тело. Радиационная температура тела
всегда меньше истинной температуры тела
. Действительно, для реального тела
. Отсюда находим, что
, то есть
, так как у реальных тел
.

Радиационную температуру сильно нагретых раскаленных тел можно определить с помощью радиационного пирометра (рис. 1.5), в котором изображение достаточно удаленного нагретого источника И проецируется с помощью объектива на приемник П так, чтобы изображение излучателя полностью перекрывало приемник. Для оценки энергии излучения, попавшего на приемник, обычно используются металлические или полупроводниковые болометры или термоэлементы. Действие болометров основано на изменении электрического сопротивления металла или полупроводника при изменении температуры, вызванном поглощением падающего потока излучения. Изменение температуры поглощающей поверхности термоэлементов приводит к появлению в них термо-ЭДС.

Показание прибора, подсоединенного к болометру или термоэлементу, оказывается пропорциональным энергии излучения, попавшей на приемник пирометра. Проградуировав предварительно пирометр по излучению эталона абсолютно черного тела при различных температурах, можно по шкале прибора измерять радиационные температуры различных нагретых тел.

Рис. 1.5.

Зная интегральную поглощательную способность материала излучателя, можно перевести измеренную радиационную температуру излучателя

в его истинную температуру
по формуле

.