Смекни!
smekni.com

Нанотехнологии для школьников (стр. 10 из 11)

Таким образом, нанотехнологии позволяют создавать самоочищающиеся покрытия и материалы, обладающие также водоотталкивающими свойствами. Материалы, изготовленные из таких тканей, остаются всегда чистыми. Уже производят самоочищающееся ветровое стекло, внешняя поверхность которого покрыта нановорсинками. На таком стекле «дворникам» делать нечего. Есть в продаже постоянно чистые колесные диски для колёс автомобилей, самоочищающиеся с использованием «эффекта лотоса», и уже сейчас можно покрасить снаружи дом краской, к которой бы грязь не прилипала.

Нанобатарейки – мощные и долговечные

В отличие от транзисторов миниатюризация батареек происходит очень медленно. Размер гальванических элементов питания, приведённый к единице мощности, уменьшился за последние 50 лет лишь в 15 раз, а размер транзистора за это же время уменьшился более чем 1000 раз и составляет сейчас около 100 нм. Известно, что размер автономной электронной схемы часто определяется не её электронной начинкой, а размером источника тока. При этом, чем умней электроника прибора, тем большую батарейку она требует. Поэтому для дальнейшей миниатюризации электронных приборов необходимо разрабатывать, новые типы батареек. И здесь опять помогают нанотехнологии

Наночастицы увеличивают поверхность электродов

Чем больше площадь электродов батареек и аккумуляторов, тем больший ток они могут давать. Чтобы увеличить площадь электродов, их поверхность покрывают проводящими наночастицами, нанотрубками и т.п.

Компания Toshiba в 2005 году создала прототип литий-ионной аккумуляторной батарейки, отрицательный электрод которой был покрыт нанокристаллами титаната лития, в результате чего площадь электрода выросла в несколько десятков раз. Новый аккумулятор способен набирать 80% своей емкости всего за одну минуту зарядки, в то время как обычные литий-ионные аккумуляторы заряжаются со скоростью 2-3% в минуту, и для полной зарядки им требуется целый час.

Кроме высокой скорости перезарядки аккумуляторы, содержащие электроды из наночастиц, имеют увеличенный срок службы: после 1000 циклов заряда/разряда происходит потеря лишь 1% ее емкости, а общий ресурс новых батарей составляет более 5 тысяч циклов. А ещё, эти аккумуляторы могут работать при температурах до -40оC, теряя при этом лишь 20% заряда против 100% у типичных современных аккумуляторных батарей уже при -25оC.

С 2007 года появились в продаже аккумуляторы с электродами из проводящих наночастиц, которые могут быть установлены на электромобили. Эти литий-ионные аккумуляторы способны запасать энергию до 35 кВт.час, заряжаясь до максимальной ёмкости всего за 10 минут. Сейчас дальность пробега электромобиля с такими аккумуляторами – 200 км, но уже разработана следующая модель этих аккумуляторов, позволяющая увеличить пробег электромобиля до 400 км, что практически сравнимо с максимальным пробегом бензиновых машин (от заправки до заправки).

Нановыключатель для батарейки

Один из основных недостатков современных батареек - они за несколько лет полностью теряют свою мощность даже, если не работают, а лежат на складе (15 % энергии теряются каждый год). Причиной падения со временем энергии у батареек является то, что даже у неработающих батареек электроды и электролит всегда соприкасаются между собой, и поэтому постепенно меняются ионный состав электролита и поверхность электродов, что и вызывает падение мощности батареек.

Чтобы избежать контакта электролита с электродами при хранении батарейки, их поверхность можно защитить нановолосками, несмачиваемыми водой (см. рисунок 55), имитируя «эффект лотоса», о котором было рассказано выше.

Рисунок 55. Схематическое изображение «нанотравы» из наностержней 300 нм диаметра, растущей на одном из электродов батарейки. Из-за гидрофобных свойств материала нановолосков раствор голубоватого электролита не может приблизиться к поверхности «красного» электрода, и батарейка не теряет своей мощности в течение многих лет. Взято из Scientific American, 2006, Feb, p. 73.

Известно, что адгезией (прилипанием) можно управлять с помощью внешнего электрического поля. Каждый видел, как к наэлектризованной пластмассовой расчёске, прилипают мелкие кусочки бумаги, крошки, пыль и т.п. Смачиваемость определяется адгезией, и поэтому электрическое поле, приложенное между жидкостью и поверхностью твёрдого тела, всегда увеличивает смачиваемость последнего.

Гидрофобное покрытие нановолосков защищает поверхность одного из электродов батарейки от контакта с электролитом (рис. 55). Однако, если мы хотим пользоваться батарейкой, то, достаточно подать небольшое напряжение на нановолоски, и они становятся гидрофильными, в результате чего электролит заполняет всё пространство между электродами, делая батарейку работоспособной.

Считают, что описанная выше нанотехнология включения и выключения будет востребована для батареек в разнообразных в датчиках, например, сбрасываемых с самолёта в труднодоступных областях, использовать которые планируется лишь через несколько лет или в каких-либо специальных случаях по сигналу.

Конденсаторы с обкладками из нанотрубок

Исследователи считают, что электрический конденсатор, изобретённый около 300 лет тому назад мог бы стать отличной батарейкой, если усовершенствовать его с помощью нанотехнологий. В отличие от гальванических источников тока конденсатор может неограниченно долго служить аккумулятором электрической энергии. При этом зарядить конденсатор можно гораздо быстрее, чем любой аккумулятор.

Единственный недостаток электрического конденсатора, по сравнению с гальваническими источника тока, - его малая удельная энергоёмкость (отношение запасённой энергии к объёму). В настоящее время удельная энергоёмкость конденсаторов приблизительно в 25 раз меньше, чем у батареек и аккумуляторов.

Известно, что ёмкость и энергоёмкость конденсатора прямо пропорциональны площади поверхности его обкладок. С помощью нанотехнологий для увеличения площади обкладок конденсатора можно на их поверхности вырастить лес из проводящих нанотрубок (рис. 56). В результате, энергоёмкость такого конденсатора может увеличиться в тысячи раз. Полагают, что такие конденсаторы станут распространёнными источниками тока в самом ближайшем будущем.

Рисунок 56. Поверхность одной из обкладок конденсатора, представляющая собой лес и вертикально ориентированных углеродных нанотрубок.

Для тех, кто хочет связать будущее с нанотехнологиями

Сейчас подготовку специалистов по направлению «нанотехнологии» ведут многие российские вузы. Во многих престижных вузах появляются факультеты и кафедры нанотехнологий. Все понимают перспективность этого направления, понимают его прогрессивность…и даже, пожалуй, выгоду. Последние годы ознаменовались бурным ростом интереса к нанотехнологиям и ростом инвестиций в них во всём мире. И это вполне понятно, учитывая, что нанотехнологии обеспечивают высокий потенциал экономического роста, от которого зависят качество жизни населения, технологическая и оборонная безопасность, ресурсо- и энергосбережение. Сейчас практически во всех развитых странах действуют национальные программы в области нанотехнологий. Они имеют долговременный характер, а их финансирование осуществляется за счет средств, выделяемых как из государственных источников, так и из других фондов.

Список вузов, в которых можно обучаться по специальности «нанотехнологии»

1. МГУ им. М.В. Ломоносова,

2. ГОУ ВПО "Московский физико-технический институт (государственный университет)",

3. ГОУ ВПО "Московский государственный технический университет им. Н.Э. Баумана,

4. ГОУ ВПО "Московский государственный институт стали и сплавов (технологический университет)",

5. ГОУ ВПО "Московский государственный институт электронной техники (технический университет)",

6. ФГУ ВПО "Санкт-Петербургский государственный университет",

7. ГОУ ВПО "Таганрогский государственный радиотехнический университет" (в составе Южного федерального университета),

8. ГОУ ВПО "Нижегородский государственный университет им. Н.И. Лобачевского",

9. ФГУ ВПО "Томский государственный университет".

10. ГОУ ВПО "Дальневосточный государственный университет",

11. ГОУ ВПО "Самарский государственный аэрокосмический университет имени академика С.П. Королева",

12. ГОУ ВПО "Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет)",

13. ГОУ ВПО "Томский государственный университет систем управления и радиоэлектроники",

14. ГОУ ВПО "Томский политехнический университет",

15. ГОУ ВПО "Новосибирский государственный университет",

16. Национальный исследовательский ядерный университет "МИФИ",

17. ГОУ ВПО "Санкт-Петербургский государственный политехнический университет",

18. ГОУ ВПО "Московский энергетический институт (технический университет)",

19. ГОУ ВПО "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)",

20. ГОУ ВПО "Санкт-Петербургский государственный университет информационных технологий, механики и оптики",

21. ГОУ ВПО "Белгородский государственный университет",

22. ГОУ ВПО "Российский университет дружбы народов",

23. ГОУ ВПО "Уральский государственный университет им. А.М. Горького",

24. ГОУ ВПО "Саратовский государственный университет им. Н.Г. Чернышевского",

25. ГОУ ВПО "Владимирский государственный университет",

26. ГОУ ВПО "Московский государственный строительный университет",

27. ГОУ ВПО "Дальневосточный государственный технический университет (ДВПИ им. В.В. Куйбышева)",